OpenTTD Source 20250528-master-g3aca5d62a8
landscape.cpp
Go to the documentation of this file.
1/*
2 * This file is part of OpenTTD.
3 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
4 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
5 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
6 */
7
12#include "stdafx.h"
13#include "heightmap.h"
14#include "clear_map.h"
15#include "spritecache.h"
16#include "viewport_func.h"
17#include "command_func.h"
18#include "landscape.h"
19#include "void_map.h"
20#include "tgp.h"
21#include "genworld.h"
22#include "fios.h"
23#include "error_func.h"
26#include "water.h"
27#include "effectvehicle_func.h"
28#include "landscape_type.h"
29#include "animated_tile_func.h"
30#include "core/flatset_type.hpp"
31#include "core/random_func.hpp"
32#include "object_base.h"
33#include "company_func.h"
34#include "company_gui.h"
35#include "pathfinder/aystar.h"
36#include "saveload/saveload.h"
37#include "framerate_type.h"
38#include "landscape_cmd.h"
39#include "terraform_cmd.h"
40#include "station_func.h"
42
43#include "table/strings.h"
44#include "table/sprites.h"
45
46#include "safeguards.h"
47
48extern const TileTypeProcs
49 _tile_type_clear_procs,
50 _tile_type_rail_procs,
53 _tile_type_trees_procs,
54 _tile_type_station_procs,
55 _tile_type_water_procs,
56 _tile_type_void_procs,
57 _tile_type_industry_procs,
58 _tile_type_tunnelbridge_procs,
59 _tile_type_object_procs;
60
66const TileTypeProcs * const _tile_type_procs[16] = {
67 &_tile_type_clear_procs,
68 &_tile_type_rail_procs,
71 &_tile_type_trees_procs,
72 &_tile_type_station_procs,
73 &_tile_type_water_procs,
74 &_tile_type_void_procs,
75 &_tile_type_industry_procs,
76 &_tile_type_tunnelbridge_procs,
77 &_tile_type_object_procs,
78};
79
81extern const uint8_t _slope_to_sprite_offset[32] = {
82 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0,
83 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 17, 0, 15, 18, 0,
84};
85
86static const uint TILE_UPDATE_FREQUENCY_LOG = 8;
88
97static std::unique_ptr<SnowLine> _snow_line;
98
112Point InverseRemapCoords2(int x, int y, bool clamp_to_map, bool *clamped)
113{
114 if (clamped != nullptr) *clamped = false; // Not clamping yet.
115
116 /* Initial x/y world coordinate is like if the landscape
117 * was completely flat on height 0. */
118 Point pt = InverseRemapCoords(x, y);
119
120 const uint min_coord = _settings_game.construction.freeform_edges ? TILE_SIZE : 0;
121 const uint max_x = Map::MaxX() * TILE_SIZE - 1;
122 const uint max_y = Map::MaxY() * TILE_SIZE - 1;
123
124 if (clamp_to_map) {
125 /* Bring the coordinates near to a valid range. At the top we allow a number
126 * of extra tiles. This is mostly due to the tiles on the north side of
127 * the map possibly being drawn higher due to the extra height levels. */
129 Point old_pt = pt;
130 pt.x = Clamp(pt.x, -extra_tiles * TILE_SIZE, max_x);
131 pt.y = Clamp(pt.y, -extra_tiles * TILE_SIZE, max_y);
132 if (clamped != nullptr) *clamped = (pt.x != old_pt.x) || (pt.y != old_pt.y);
133 }
134
135 /* Now find the Z-world coordinate by fix point iteration.
136 * This is a bit tricky because the tile height is non-continuous at foundations.
137 * The clicked point should be approached from the back, otherwise there are regions that are not clickable.
138 * (FOUNDATION_HALFTILE_LOWER on SLOPE_STEEP_S hides north halftile completely)
139 * So give it a z-malus of 4 in the first iterations. */
140 int z = 0;
141 if (clamp_to_map) {
142 for (int i = 0; i < 5; i++) z = GetSlopePixelZ(Clamp(pt.x + std::max(z, 4) - 4, min_coord, max_x), Clamp(pt.y + std::max(z, 4) - 4, min_coord, max_y)) / 2;
143 for (int m = 3; m > 0; m--) z = GetSlopePixelZ(Clamp(pt.x + std::max(z, m) - m, min_coord, max_x), Clamp(pt.y + std::max(z, m) - m, min_coord, max_y)) / 2;
144 for (int i = 0; i < 5; i++) z = GetSlopePixelZ(Clamp(pt.x + z, min_coord, max_x), Clamp(pt.y + z, min_coord, max_y)) / 2;
145 } else {
146 for (int i = 0; i < 5; i++) z = GetSlopePixelZOutsideMap(pt.x + std::max(z, 4) - 4, pt.y + std::max(z, 4) - 4) / 2;
147 for (int m = 3; m > 0; m--) z = GetSlopePixelZOutsideMap(pt.x + std::max(z, m) - m, pt.y + std::max(z, m) - m) / 2;
148 for (int i = 0; i < 5; i++) z = GetSlopePixelZOutsideMap(pt.x + z, pt.y + z ) / 2;
149 }
150
151 pt.x += z;
152 pt.y += z;
153 if (clamp_to_map) {
154 Point old_pt = pt;
155 pt.x = Clamp(pt.x, min_coord, max_x);
156 pt.y = Clamp(pt.y, min_coord, max_y);
157 if (clamped != nullptr) *clamped = *clamped || (pt.x != old_pt.x) || (pt.y != old_pt.y);
158 }
159
160 return pt;
161}
162
172{
173 if (!IsFoundation(f)) return 0;
174
175 if (IsLeveledFoundation(f)) {
176 uint dz = 1 + (IsSteepSlope(s) ? 1 : 0);
177 s = SLOPE_FLAT;
178 return dz;
179 }
180
183 return 0;
184 }
185
188 return 0;
189 }
190
191 uint dz = IsSteepSlope(s) ? 1 : 0;
192 Corner highest_corner = GetHighestSlopeCorner(s);
193
194 switch (f) {
196 s = (((highest_corner == CORNER_W) || (highest_corner == CORNER_S)) ? SLOPE_SW : SLOPE_NE);
197 break;
198
200 s = (((highest_corner == CORNER_S) || (highest_corner == CORNER_E)) ? SLOPE_SE : SLOPE_NW);
201 break;
202
204 s = SlopeWithOneCornerRaised(highest_corner);
205 break;
206
208 s = HalftileSlope(SlopeWithOneCornerRaised(highest_corner), highest_corner);
209 break;
210
211 default: NOT_REACHED();
212 }
213 return dz;
214}
215
216
229uint GetPartialPixelZ(int x, int y, Slope corners)
230{
231 if (IsHalftileSlope(corners)) {
232 /* A foundation is placed on half the tile at a specific corner. This means that,
233 * depending on the corner, that one half of the tile is at the maximum height. */
234 switch (GetHalftileSlopeCorner(corners)) {
235 case CORNER_W:
236 if (x > y) return GetSlopeMaxPixelZ(corners);
237 break;
238
239 case CORNER_S:
240 if (x + y >= (int)TILE_SIZE) return GetSlopeMaxPixelZ(corners);
241 break;
242
243 case CORNER_E:
244 if (x <= y) return GetSlopeMaxPixelZ(corners);
245 break;
246
247 case CORNER_N:
248 if (x + y < (int)TILE_SIZE) return GetSlopeMaxPixelZ(corners);
249 break;
250
251 default: NOT_REACHED();
252 }
253 }
254
255 switch (RemoveHalftileSlope(corners)) {
256 case SLOPE_FLAT: return 0;
257
258 /* One corner is up.*/
259 case SLOPE_N: return x + y <= (int)TILE_SIZE ? (TILE_SIZE - x - y) >> 1 : 0;
260 case SLOPE_E: return y >= x ? (1 + y - x) >> 1 : 0;
261 case SLOPE_S: return x + y >= (int)TILE_SIZE ? (1 + x + y - TILE_SIZE) >> 1 : 0;
262 case SLOPE_W: return x >= y ? (x - y) >> 1 : 0;
263
264 /* Two corners next to each other are up. */
265 case SLOPE_NE: return (TILE_SIZE - x) >> 1;
266 case SLOPE_SE: return (y + 1) >> 1;
267 case SLOPE_SW: return (x + 1) >> 1;
268 case SLOPE_NW: return (TILE_SIZE - y) >> 1;
269
270 /* Three corners are up on the same level. */
271 case SLOPE_ENW: return x + y >= (int)TILE_SIZE ? TILE_HEIGHT - ((1 + x + y - TILE_SIZE) >> 1) : TILE_HEIGHT;
272 case SLOPE_SEN: return y < x ? TILE_HEIGHT - ((x - y) >> 1) : TILE_HEIGHT;
273 case SLOPE_WSE: return x + y <= (int)TILE_SIZE ? TILE_HEIGHT - ((TILE_SIZE - x - y) >> 1) : TILE_HEIGHT;
274 case SLOPE_NWS: return x < y ? TILE_HEIGHT - ((1 + y - x) >> 1) : TILE_HEIGHT;
275
276 /* Two corners at opposite sides are up. */
277 case SLOPE_NS: return x + y < (int)TILE_SIZE ? (TILE_SIZE - x - y) >> 1 : (1 + x + y - TILE_SIZE) >> 1;
278 case SLOPE_EW: return x >= y ? (x - y) >> 1 : (1 + y - x) >> 1;
279
280 /* Very special cases. */
281 case SLOPE_ELEVATED: return TILE_HEIGHT;
282
283 /* Steep slopes. The top is at 2 * TILE_HEIGHT. */
284 case SLOPE_STEEP_N: return (TILE_SIZE - x + TILE_SIZE - y) >> 1;
285 case SLOPE_STEEP_E: return (TILE_SIZE + 1 + y - x) >> 1;
286 case SLOPE_STEEP_S: return (1 + x + y) >> 1;
287 case SLOPE_STEEP_W: return (TILE_SIZE + x - y) >> 1;
288
289 default: NOT_REACHED();
290 }
291}
292
304int GetSlopePixelZ(int x, int y, bool ground_vehicle)
305{
306 TileIndex tile = TileVirtXY(x, y);
307
308 return _tile_type_procs[GetTileType(tile)]->get_slope_z_proc(tile, x, y, ground_vehicle);
309}
310
320{
321 if (IsInsideBS(x, 0, Map::SizeX() * TILE_SIZE) && IsInsideBS(y, 0, Map::SizeY() * TILE_SIZE)) {
322 return GetSlopePixelZ(x, y, false);
323 } else {
324 return _tile_type_procs[MP_VOID]->get_slope_z_proc(INVALID_TILE, x, y, false);
325 }
326}
327
338{
339 assert(!IsHalftileSlope(tileh));
340 return ((tileh & SlopeWithOneCornerRaised(corner)) != 0 ? 1 : 0) + (tileh == SteepSlope(corner) ? 1 : 0);
341}
342
355void GetSlopePixelZOnEdge(Slope tileh, DiagDirection edge, int &z1, int &z2)
356{
357 static const Slope corners[4][4] = {
358 /* corner | steep slope
359 * z1 z2 | z1 z2 */
360 {SLOPE_E, SLOPE_N, SLOPE_STEEP_E, SLOPE_STEEP_N}, // DIAGDIR_NE, z1 = E, z2 = N
361 {SLOPE_S, SLOPE_E, SLOPE_STEEP_S, SLOPE_STEEP_E}, // DIAGDIR_SE, z1 = S, z2 = E
362 {SLOPE_S, SLOPE_W, SLOPE_STEEP_S, SLOPE_STEEP_W}, // DIAGDIR_SW, z1 = S, z2 = W
363 {SLOPE_W, SLOPE_N, SLOPE_STEEP_W, SLOPE_STEEP_N}, // DIAGDIR_NW, z1 = W, z2 = N
364 };
365
366 int halftile_test = (IsHalftileSlope(tileh) ? SlopeWithOneCornerRaised(GetHalftileSlopeCorner(tileh)) : 0);
367 if (halftile_test == corners[edge][0]) z2 += TILE_HEIGHT; // The slope is non-continuous in z2. z2 is on the upper side.
368 if (halftile_test == corners[edge][1]) z1 += TILE_HEIGHT; // The slope is non-continuous in z1. z1 is on the upper side.
369
370 if ((tileh & corners[edge][0]) != 0) z1 += TILE_HEIGHT; // z1 is raised
371 if ((tileh & corners[edge][1]) != 0) z2 += TILE_HEIGHT; // z2 is raised
372 if (RemoveHalftileSlope(tileh) == corners[edge][2]) z1 += TILE_HEIGHT; // z1 is highest corner of a steep slope
373 if (RemoveHalftileSlope(tileh) == corners[edge][3]) z2 += TILE_HEIGHT; // z2 is highest corner of a steep slope
374}
375
383std::tuple<Slope, int> GetFoundationSlope(TileIndex tile)
384{
385 auto [tileh, z] = GetTileSlopeZ(tile);
386 Foundation f = _tile_type_procs[GetTileType(tile)]->get_foundation_proc(tile, tileh);
387 z += ApplyFoundationToSlope(f, tileh);
388 return {tileh, z};
389}
390
391
392bool HasFoundationNW(TileIndex tile, Slope slope_here, uint z_here)
393{
394 int z_W_here = z_here;
395 int z_N_here = z_here;
396 GetSlopePixelZOnEdge(slope_here, DIAGDIR_NW, z_W_here, z_N_here);
397
398 auto [slope, z] = GetFoundationPixelSlope(TileAddXY(tile, 0, -1));
399 int z_W = z;
400 int z_N = z;
401 GetSlopePixelZOnEdge(slope, DIAGDIR_SE, z_W, z_N);
402
403 return (z_N_here > z_N) || (z_W_here > z_W);
404}
405
406
407bool HasFoundationNE(TileIndex tile, Slope slope_here, uint z_here)
408{
409 int z_E_here = z_here;
410 int z_N_here = z_here;
411 GetSlopePixelZOnEdge(slope_here, DIAGDIR_NE, z_E_here, z_N_here);
412
413 auto [slope, z] = GetFoundationPixelSlope(TileAddXY(tile, -1, 0));
414 int z_E = z;
415 int z_N = z;
416 GetSlopePixelZOnEdge(slope, DIAGDIR_SW, z_E, z_N);
417
418 return (z_N_here > z_N) || (z_E_here > z_E);
419}
420
427{
428 if (!IsFoundation(f)) return;
429
430 /* Two part foundations must be drawn separately */
431 assert(f != FOUNDATION_STEEP_BOTH);
432
433 uint sprite_block = 0;
434 auto [slope, z] = GetFoundationPixelSlope(ti->tile);
435
436 /* Select the needed block of foundations sprites
437 * Block 0: Walls at NW and NE edge
438 * Block 1: Wall at NE edge
439 * Block 2: Wall at NW edge
440 * Block 3: No walls at NW or NE edge
441 */
442 if (!HasFoundationNW(ti->tile, slope, z)) sprite_block += 1;
443 if (!HasFoundationNE(ti->tile, slope, z)) sprite_block += 2;
444
445 /* Use the original slope sprites if NW and NE borders should be visible */
446 SpriteID leveled_base = (sprite_block == 0 ? (int)SPR_FOUNDATION_BASE : (SPR_SLOPES_VIRTUAL_BASE + sprite_block * TRKFOUND_BLOCK_SIZE));
447 SpriteID inclined_base = SPR_SLOPES_VIRTUAL_BASE + SLOPES_INCLINED_OFFSET + sprite_block * TRKFOUND_BLOCK_SIZE;
448 SpriteID halftile_base = SPR_HALFTILE_FOUNDATION_BASE + sprite_block * HALFTILE_BLOCK_SIZE;
449
450 if (IsSteepSlope(ti->tileh)) {
452 /* Lower part of foundation */
454 leveled_base + (ti->tileh & ~SLOPE_STEEP), PAL_NONE, ti->x, ti->y, TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1, ti->z
455 );
456 }
457
458 Corner highest_corner = GetHighestSlopeCorner(ti->tileh);
459 ti->z += ApplyPixelFoundationToSlope(f, ti->tileh);
460
461 if (IsInclinedFoundation(f)) {
462 /* inclined foundation */
463 uint8_t inclined = highest_corner * 2 + (f == FOUNDATION_INCLINED_Y ? 1 : 0);
464
465 AddSortableSpriteToDraw(inclined_base + inclined, PAL_NONE, ti->x, ti->y,
468 TILE_HEIGHT, ti->z
469 );
470 OffsetGroundSprite(0, 0);
471 } else if (IsLeveledFoundation(f)) {
472 AddSortableSpriteToDraw(leveled_base + SlopeWithOneCornerRaised(highest_corner), PAL_NONE, ti->x, ti->y, TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1, ti->z - TILE_HEIGHT);
474 } else if (f == FOUNDATION_STEEP_LOWER) {
475 /* one corner raised */
477 } else {
478 /* halftile foundation */
479 int x_bb = (((highest_corner == CORNER_W) || (highest_corner == CORNER_S)) ? TILE_SIZE / 2 : 0);
480 int y_bb = (((highest_corner == CORNER_S) || (highest_corner == CORNER_E)) ? TILE_SIZE / 2 : 0);
481
482 AddSortableSpriteToDraw(halftile_base + highest_corner, PAL_NONE, ti->x + x_bb, ti->y + y_bb, TILE_SIZE / 2, TILE_SIZE / 2, TILE_HEIGHT - 1, ti->z + TILE_HEIGHT);
483 /* Reposition ground sprite back to original position after bounding box change above. This is similar to
484 * RemapCoords() but without zoom scaling. */
485 Point pt = {(y_bb - x_bb) * 2, y_bb + x_bb};
486 OffsetGroundSprite(-pt.x, -pt.y);
487 }
488 } else {
489 if (IsLeveledFoundation(f)) {
490 /* leveled foundation */
491 AddSortableSpriteToDraw(leveled_base + ti->tileh, PAL_NONE, ti->x, ti->y, TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1, ti->z);
493 } else if (IsNonContinuousFoundation(f)) {
494 /* halftile foundation */
495 Corner halftile_corner = GetHalftileFoundationCorner(f);
496 int x_bb = (((halftile_corner == CORNER_W) || (halftile_corner == CORNER_S)) ? TILE_SIZE / 2 : 0);
497 int y_bb = (((halftile_corner == CORNER_S) || (halftile_corner == CORNER_E)) ? TILE_SIZE / 2 : 0);
498
499 AddSortableSpriteToDraw(halftile_base + halftile_corner, PAL_NONE, ti->x + x_bb, ti->y + y_bb, TILE_SIZE / 2, TILE_SIZE / 2, TILE_HEIGHT - 1, ti->z);
500 /* Reposition ground sprite back to original position after bounding box change above. This is similar to
501 * RemapCoords() but without zoom scaling. */
502 Point pt = {(y_bb - x_bb) * 2, y_bb + x_bb};
503 OffsetGroundSprite(-pt.x, -pt.y);
504 } else if (IsSpecialRailFoundation(f)) {
505 /* anti-zig-zag foundation */
506 SpriteID spr;
507 if (ti->tileh == SLOPE_NS || ti->tileh == SLOPE_EW) {
508 /* half of leveled foundation under track corner */
510 } else {
511 /* tile-slope = sloped along X/Y, foundation-slope = three corners raised */
512 spr = inclined_base + 2 * GetRailFoundationCorner(f) + ((ti->tileh == SLOPE_SW || ti->tileh == SLOPE_NE) ? 1 : 0);
513 }
514 AddSortableSpriteToDraw(spr, PAL_NONE, ti->x, ti->y, TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1, ti->z);
515 OffsetGroundSprite(0, 0);
516 } else {
517 /* inclined foundation */
518 uint8_t inclined = GetHighestSlopeCorner(ti->tileh) * 2 + (f == FOUNDATION_INCLINED_Y ? 1 : 0);
519
520 AddSortableSpriteToDraw(inclined_base + inclined, PAL_NONE, ti->x, ti->y,
523 TILE_HEIGHT, ti->z
524 );
525 OffsetGroundSprite(0, 0);
526 }
527 ti->z += ApplyPixelFoundationToSlope(f, ti->tileh);
528 }
529}
530
531void DoClearSquare(TileIndex tile)
532{
533 /* If the tile can have animation and we clear it, delete it from the animated tile list. */
534 if (MayAnimateTile(tile)) DeleteAnimatedTile(tile, true);
535
536 bool remove = IsDockingTile(tile);
539 if (remove) RemoveDockingTile(tile);
540
543}
544
555TrackStatus GetTileTrackStatus(TileIndex tile, TransportType mode, uint sub_mode, DiagDirection side)
556{
557 return _tile_type_procs[GetTileType(tile)]->get_tile_track_status_proc(tile, mode, sub_mode, side);
558}
559
566void ChangeTileOwner(TileIndex tile, Owner old_owner, Owner new_owner)
567{
568 _tile_type_procs[GetTileType(tile)]->change_tile_owner_proc(tile, old_owner, new_owner);
569}
570
571void GetTileDesc(TileIndex tile, TileDesc &td)
572{
574}
575
582{
583 return _snow_line != nullptr;
584}
585
591void SetSnowLine(std::unique_ptr<SnowLine> &&snow_line)
592{
593 _snow_line = std::move(snow_line);
594}
595
601uint8_t GetSnowLine()
602{
604
605 TimerGameCalendar::YearMonthDay ymd = TimerGameCalendar::ConvertDateToYMD(TimerGameCalendar::date);
606 return _snow_line->table[ymd.month][ymd.day];
607}
608
615{
616 return _snow_line == nullptr ? _settings_game.game_creation.snow_line_height : _snow_line->highest_value;
617}
618
625{
626 return _snow_line == nullptr ? _settings_game.game_creation.snow_line_height : _snow_line->lowest_value;
627}
628
634{
635 _snow_line = nullptr;
636}
637
645{
647 bool do_clear = false;
648 /* Test for stuff which results in water when cleared. Then add the cost to also clear the water. */
649 if (flags.Test(DoCommandFlag::ForceClearTile) && HasTileWaterClass(tile) && IsTileOnWater(tile) && !IsWaterTile(tile) && !IsCoastTile(tile)) {
650 if (flags.Test(DoCommandFlag::Auto) && GetWaterClass(tile) == WATER_CLASS_CANAL) return CommandCost(STR_ERROR_MUST_DEMOLISH_CANAL_FIRST);
651 do_clear = true;
652 cost.AddCost(GetWaterClass(tile) == WATER_CLASS_CANAL ? _price[PR_CLEAR_CANAL] : _price[PR_CLEAR_WATER]);
653 }
654
656 if (c != nullptr && (int)GB(c->clear_limit, 16, 16) < 1) {
657 return CommandCost(STR_ERROR_CLEARING_LIMIT_REACHED);
658 }
659
660 const ClearedObjectArea *coa = FindClearedObject(tile);
661
662 /* If this tile was the first tile which caused object destruction, always
663 * pass it on to the tile_type_proc. That way multiple test runs and the exec run stay consistent. */
664 if (coa != nullptr && coa->first_tile != tile) {
665 /* If this tile belongs to an object which was already cleared via another tile, pretend it has been
666 * already removed.
667 * However, we need to check stuff, which is not the same for all object tiles. (e.g. being on water or not) */
668
669 /* If a object is removed, it leaves either bare land or water. */
670 if (flags.Test(DoCommandFlag::NoWater) && HasTileWaterClass(tile) && IsTileOnWater(tile)) {
671 return CommandCost(STR_ERROR_CAN_T_BUILD_ON_WATER);
672 }
673 } else {
674 cost.AddCost(_tile_type_procs[GetTileType(tile)]->clear_tile_proc(tile, flags));
675 }
676
677 if (flags.Test(DoCommandFlag::Execute)) {
678 if (c != nullptr) c->clear_limit -= 1 << 16;
679 if (do_clear) {
680 if (IsWaterTile(tile) && IsCanal(tile)) {
681 Owner owner = GetTileOwner(tile);
682 if (Company::IsValidID(owner)) {
683 Company::Get(owner)->infrastructure.water--;
685 }
686 }
687 DoClearSquare(tile);
689 }
690 }
691 return cost;
692}
693
702std::tuple<CommandCost, Money> CmdClearArea(DoCommandFlags flags, TileIndex tile, TileIndex start_tile, bool diagonal)
703{
704 if (start_tile >= Map::Size()) return { CMD_ERROR, 0 };
705
708 CommandCost last_error = CMD_ERROR;
709 bool had_success = false;
710
712 int limit = (c == nullptr ? INT32_MAX : GB(c->clear_limit, 16, 16));
713
714 if (tile != start_tile) flags.Set(DoCommandFlag::ForceClearTile);
715
716 std::unique_ptr<TileIterator> iter = TileIterator::Create(tile, start_tile, diagonal);
717 for (; *iter != INVALID_TILE; ++(*iter)) {
718 TileIndex t = *iter;
720 if (ret.Failed()) {
721 last_error = std::move(ret);
722
723 /* We may not clear more tiles. */
724 if (c != nullptr && GB(c->clear_limit, 16, 16) < 1) break;
725 continue;
726 }
727
728 had_success = true;
729 if (flags.Test(DoCommandFlag::Execute)) {
730 money -= ret.GetCost();
731 if (ret.GetCost() > 0 && money < 0) {
732 return { cost, ret.GetCost() };
733 }
735
736 /* draw explosion animation...
737 * Disable explosions when game is paused. Looks silly and blocks the view. */
738 if ((t == tile || t == start_tile) && _pause_mode.None()) {
739 /* big explosion in two corners, or small explosion for single tiles */
741 TileX(tile) == TileX(start_tile) && TileY(tile) == TileY(start_tile) ? EV_EXPLOSION_SMALL : EV_EXPLOSION_LARGE
742 );
743 }
744 } else {
745 /* When we're at the clearing limit we better bail (unneed) testing as well. */
746 if (ret.GetCost() != 0 && --limit <= 0) break;
747 }
748 cost.AddCost(ret.GetCost());
749 }
750
751 return { had_success ? cost : last_error, 0 };
752}
753
754
755TileIndex _cur_tileloop_tile;
756
761{
763
764 /* The pseudorandom sequence of tiles is generated using a Galois linear feedback
765 * shift register (LFSR). This allows a deterministic pseudorandom ordering, but
766 * still with minimal state and fast iteration. */
767
768 /* Maximal length LFSR feedback terms, from 12-bit (for 64x64 maps) to 24-bit (for 4096x4096 maps).
769 * Extracted from http://www.ece.cmu.edu/~koopman/lfsr/ */
770 static const uint32_t feedbacks[] = {
771 0xD8F, 0x1296, 0x2496, 0x4357, 0x8679, 0x1030E, 0x206CD, 0x403FE, 0x807B8, 0x1004B2, 0x2006A8, 0x4004B2, 0x800B87
772 };
773 static_assert(lengthof(feedbacks) == 2 * MAX_MAP_SIZE_BITS - 2 * MIN_MAP_SIZE_BITS + 1);
774 const uint32_t feedback = feedbacks[Map::LogX() + Map::LogY() - 2 * MIN_MAP_SIZE_BITS];
775
776 /* We update every tile every TILE_UPDATE_FREQUENCY ticks, so divide the map size by 2^TILE_UPDATE_FREQUENCY_LOG = TILE_UPDATE_FREQUENCY */
777 static_assert(2 * MIN_MAP_SIZE_BITS >= TILE_UPDATE_FREQUENCY_LOG);
778 uint count = 1 << (Map::LogX() + Map::LogY() - TILE_UPDATE_FREQUENCY_LOG);
779
780 TileIndex tile = _cur_tileloop_tile;
781 /* The LFSR cannot have a zeroed state. */
782 assert(tile != 0);
783
784 /* Manually update tile 0 every TILE_UPDATE_FREQUENCY ticks - the LFSR never iterates over it itself. */
786 _tile_type_procs[GetTileType(0)]->tile_loop_proc(TileIndex{});
787 count--;
788 }
789
790 while (count--) {
791 _tile_type_procs[GetTileType(tile)]->tile_loop_proc(tile);
792
793 /* Get the next tile in sequence using a Galois LFSR. */
794 tile = TileIndex{(tile.base() >> 1) ^ (-(int32_t)(tile.base() & 1) & feedback)};
795 }
796
797 _cur_tileloop_tile = tile;
798}
799
800void InitializeLandscape()
801{
802 for (uint y = _settings_game.construction.freeform_edges ? 1 : 0; y < Map::MaxY(); y++) {
803 for (uint x = _settings_game.construction.freeform_edges ? 1 : 0; x < Map::MaxX(); x++) {
804 MakeClear(TileXY(x, y), CLEAR_GRASS, 3);
805 SetTileHeight(TileXY(x, y), 0);
808 }
809 }
810
811 for (uint x = 0; x < Map::SizeX(); x++) MakeVoid(TileXY(x, Map::MaxY()));
812 for (uint y = 0; y < Map::SizeY(); y++) MakeVoid(TileXY(Map::MaxX(), y));
813}
814
815static const uint8_t _genterrain_tbl_1[5] = { 10, 22, 33, 37, 4 };
816static const uint8_t _genterrain_tbl_2[5] = { 0, 0, 0, 0, 33 };
817
818static void GenerateTerrain(int type, uint flag)
819{
820 uint32_t r = Random();
821
822 /* Choose one of the templates from the graphics file. */
823 const Sprite *templ = GetSprite((((r >> 24) * _genterrain_tbl_1[type]) >> 8) + _genterrain_tbl_2[type] + SPR_MAPGEN_BEGIN, SpriteType::MapGen);
824 if (templ == nullptr) UserError("Map generator sprites could not be loaded");
825
826 /* Chose a random location to apply the template to. */
827 uint x = r & Map::MaxX();
828 uint y = (r >> Map::LogX()) & Map::MaxY();
829
830 /* Make sure the template is not too close to the upper edges; bottom edges are checked later. */
831 uint edge_distance = 1 + (_settings_game.construction.freeform_edges ? 1 : 0);
832 if (x <= edge_distance || y <= edge_distance) return;
833
834 DiagDirection direction = (DiagDirection)GB(r, 22, 2);
835 uint w = templ->width;
836 uint h = templ->height;
837
838 if (DiagDirToAxis(direction) == AXIS_Y) std::swap(w, h);
839
840 const uint8_t *p = reinterpret_cast<const uint8_t *>(templ->data);
841
842 if ((flag & 4) != 0) {
843 /* This is only executed in secondary/tertiary loops to generate the terrain for arctic and tropic.
844 * It prevents the templates to be applied to certain parts of the map based on the flags, thus
845 * creating regions with different elevations/topography. */
846 uint xw = x * Map::SizeY();
847 uint yw = y * Map::SizeX();
848 uint bias = (Map::SizeX() + Map::SizeY()) * 16;
849
850 switch (flag & 3) {
851 default: NOT_REACHED();
852 case 0:
853 if (xw + yw > Map::Size() - bias) return;
854 break;
855
856 case 1:
857 if (yw < xw + bias) return;
858 break;
859
860 case 2:
861 if (xw + yw < Map::Size() + bias) return;
862 break;
863
864 case 3:
865 if (xw < yw + bias) return;
866 break;
867 }
868 }
869
870 /* Ensure the template does not overflow at the bottom edges of the map; upper edges were checked before. */
871 if (x + w >= Map::MaxX()) return;
872 if (y + h >= Map::MaxY()) return;
873
874 TileIndex tile = TileXY(x, y);
875
876 /* Get the template and overlay in a particular direction over the map's height from the given
877 * origin point (tile), and update the map's height everywhere where the height from the template
878 * is higher than the height of the map. In other words, this only raises the tile heights. */
879 switch (direction) {
880 default: NOT_REACHED();
881 case DIAGDIR_NE:
882 do {
883 TileIndex tile_cur = tile;
884
885 for (uint w_cur = w; w_cur != 0; --w_cur) {
886 if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4));
887 p++;
888 tile_cur += TileDiffXY(1, 0);
889 }
890 tile += TileDiffXY(0, 1);
891 } while (--h != 0);
892 break;
893
894 case DIAGDIR_SE:
895 do {
896 TileIndex tile_cur = tile;
897
898 for (uint h_cur = h; h_cur != 0; --h_cur) {
899 if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4));
900 p++;
901 tile_cur += TileDiffXY(0, 1);
902 }
903 tile += TileDiffXY(1, 0);
904 } while (--w != 0);
905 break;
906
907 case DIAGDIR_SW:
908 tile += TileDiffXY(w - 1, 0);
909 do {
910 TileIndex tile_cur = tile;
911
912 for (uint w_cur = w; w_cur != 0; --w_cur) {
913 if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4));
914 p++;
915 tile_cur -= TileDiffXY(1, 0);
916 }
917 tile += TileDiffXY(0, 1);
918 } while (--h != 0);
919 break;
920
921 case DIAGDIR_NW:
922 tile += TileDiffXY(0, h - 1);
923 do {
924 TileIndex tile_cur = tile;
925
926 for (uint h_cur = h; h_cur != 0; --h_cur) {
927 if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4));
928 p++;
929 tile_cur -= TileDiffXY(0, 1);
930 }
931 tile += TileDiffXY(1, 0);
932 } while (--w != 0);
933 break;
934 }
935}
936
937
938#include "table/genland.h"
939
940static void CreateDesertOrRainForest(uint desert_tropic_line)
941{
942 uint update_freq = Map::Size() / 4;
943
944 for (const auto tile : Map::Iterate()) {
945 if ((tile % update_freq) == 0) IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
946
947 if (!IsValidTile(tile)) continue;
948
949 auto allows_desert = [tile, desert_tropic_line](auto &offset) {
950 TileIndex t = AddTileIndexDiffCWrap(tile, offset);
951 return t == INVALID_TILE || (TileHeight(t) < desert_tropic_line && !IsTileType(t, MP_WATER));
952 };
953 if (std::all_of(std::begin(_make_desert_or_rainforest_data), std::end(_make_desert_or_rainforest_data), allows_desert)) {
955 }
956 }
957
958 for (uint i = 0; i != TILE_UPDATE_FREQUENCY; i++) {
960
961 RunTileLoop();
962 }
963
964 for (const auto tile : Map::Iterate()) {
965 if ((tile % update_freq) == 0) IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
966
967 if (!IsValidTile(tile)) continue;
968
969 auto allows_rainforest = [tile](auto &offset) {
970 TileIndex t = AddTileIndexDiffCWrap(tile, offset);
971 return t == INVALID_TILE || !IsTileType(t, MP_CLEAR) || !IsClearGround(t, CLEAR_DESERT);
972 };
973 if (std::all_of(std::begin(_make_desert_or_rainforest_data), std::end(_make_desert_or_rainforest_data), allows_rainforest)) {
975 }
976 }
977}
978
984static bool FindSpring(TileIndex tile)
985{
986 int reference_height;
987 if (!IsTileFlat(tile, &reference_height) || IsWaterTile(tile)) return false;
988
989 /* In the tropics rivers start in the rainforest. */
990 if (_settings_game.game_creation.landscape == LandscapeType::Tropic && GetTropicZone(tile) != TROPICZONE_RAINFOREST) return false;
991
992 /* Are there enough higher tiles to warrant a 'spring'? */
993 uint num = 0;
994 for (int dx = -1; dx <= 1; dx++) {
995 for (int dy = -1; dy <= 1; dy++) {
996 TileIndex t = TileAddWrap(tile, dx, dy);
997 if (t != INVALID_TILE && GetTileMaxZ(t) > reference_height) num++;
998 }
999 }
1000
1001 if (num < 4) return false;
1002
1003 /* Are we near the top of a hill? */
1004 for (int dx = -16; dx <= 16; dx++) {
1005 for (int dy = -16; dy <= 16; dy++) {
1006 TileIndex t = TileAddWrap(tile, dx, dy);
1007 if (t != INVALID_TILE && GetTileMaxZ(t) > reference_height + 2) return false;
1008 }
1009 }
1010
1011 return true;
1012}
1013
1019static void MakeLake(TileIndex tile, uint height_lake)
1020{
1021 if (!IsValidTile(tile) || TileHeight(tile) != height_lake || !IsTileFlat(tile)) return;
1022 if (_settings_game.game_creation.landscape == LandscapeType::Tropic && GetTropicZone(tile) == TROPICZONE_DESERT) return;
1023
1024 for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
1025 TileIndex t = tile + TileOffsByDiagDir(d);
1026 if (IsWaterTile(t)) {
1028 return;
1029 }
1030 }
1031}
1032
1038static void RiverMakeWider(TileIndex tile, TileIndex origin_tile)
1039{
1040 /* Don't expand into void tiles. */
1041 if (!IsValidTile(tile)) return;
1042
1043 /* If the tile is already sea or river, don't expand. */
1044 if (IsWaterTile(tile)) return;
1045
1046 /* If the tile is at height 0 after terraforming but the ocean hasn't flooded yet, don't build river. */
1047 if (GetTileMaxZ(tile) == 0) return;
1048
1049 Slope cur_slope = GetTileSlope(tile);
1050 Slope desired_slope = GetTileSlope(origin_tile); // Initialize matching the origin tile as a shortcut if no terraforming is needed.
1051
1052 /* Never flow uphill. */
1053 if (GetTileMaxZ(tile) > GetTileMaxZ(origin_tile)) return;
1054
1055 /* If the new tile can't hold a river tile, try terraforming. */
1056 if (!IsTileFlat(tile) && !IsInclinedSlope(cur_slope)) {
1057 /* Don't try to terraform steep slopes. */
1058 if (IsSteepSlope(cur_slope)) return;
1059
1060 bool flat_river_found = false;
1061 bool sloped_river_found = false;
1062
1063 /* There are two common possibilities:
1064 * 1. River flat, adjacent tile has one corner lowered.
1065 * 2. River descending, adjacent tile has either one or three corners raised.
1066 */
1067
1068 /* First, determine the desired slope based on adjacent river tiles. This doesn't necessarily match the origin tile for the SpiralTileSequence. */
1069 for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
1070 TileIndex other_tile = TileAddByDiagDir(tile, d);
1071 Slope other_slope = GetTileSlope(other_tile);
1072
1073 /* Only consider river tiles. */
1074 if (IsWaterTile(other_tile) && IsRiver(other_tile)) {
1075 /* If the adjacent river tile flows downhill, we need to check where we are relative to the slope. */
1076 if (IsInclinedSlope(other_slope) && GetTileMaxZ(tile) == GetTileMaxZ(other_tile)) {
1077 /* Check for a parallel slope. If we don't find one, we're above or below the slope instead. */
1080 desired_slope = other_slope;
1081 sloped_river_found = true;
1082 break;
1083 }
1084 }
1085 /* If we find an adjacent river tile, remember it. We'll terraform to match it later if we don't find a slope. */
1086 if (IsTileFlat(other_tile)) flat_river_found = true;
1087 }
1088 }
1089 /* We didn't find either an inclined or flat river, so we're climbing the wrong slope. Bail out. */
1090 if (!sloped_river_found && !flat_river_found) return;
1091
1092 /* We didn't find an inclined river, but there is a flat river. */
1093 if (!sloped_river_found && flat_river_found) desired_slope = SLOPE_FLAT;
1094
1095 /* Now that we know the desired slope, it's time to terraform! */
1096
1097 /* If the river is flat and the adjacent tile has one corner lowered, we want to raise it. */
1098 if (desired_slope == SLOPE_FLAT && IsSlopeWithThreeCornersRaised(cur_slope)) {
1099 /* Make sure we're not affecting an existing river slope tile. */
1100 for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
1101 TileIndex other_tile = TileAddByDiagDir(tile, d);
1102 if (IsInclinedSlope(GetTileSlope(other_tile)) && IsWaterTile(other_tile)) return;
1103 }
1105
1106 /* If the river is descending and the adjacent tile has either one or three corners raised, we want to make it match the slope. */
1107 } else if (IsInclinedSlope(desired_slope)) {
1108 /* Don't break existing flat river tiles by terraforming under them. */
1109 DiagDirection river_direction = ReverseDiagDir(GetInclinedSlopeDirection(desired_slope));
1110
1111 for (DiagDirDiff d = DIAGDIRDIFF_BEGIN; d < DIAGDIRDIFF_END; d++) {
1112 /* We don't care about downstream or upstream tiles, just the riverbanks. */
1113 if (d == DIAGDIRDIFF_SAME || d == DIAGDIRDIFF_REVERSE) continue;
1114
1115 TileIndex other_tile = (TileAddByDiagDir(tile, ChangeDiagDir(river_direction, d)));
1116 if (IsWaterTile(other_tile) && IsRiver(other_tile) && IsTileFlat(other_tile)) return;
1117 }
1118
1119 /* Get the corners which are different between the current and desired slope. */
1120 Slope to_change = cur_slope ^ desired_slope;
1121
1122 /* Lower unwanted corners first. If only one corner is raised, no corners need lowering. */
1123 if (!IsSlopeWithOneCornerRaised(cur_slope)) {
1124 to_change = to_change & ComplementSlope(desired_slope);
1126 }
1127
1128 /* Now check the match and raise any corners needed. */
1129 cur_slope = GetTileSlope(tile);
1130 if (cur_slope != desired_slope && IsSlopeWithOneCornerRaised(cur_slope)) {
1131 to_change = cur_slope ^ desired_slope;
1133 }
1134 }
1135 /* Update cur_slope after possibly terraforming. */
1136 cur_slope = GetTileSlope(tile);
1137 }
1138
1139 /* Sloped rivers need water both upstream and downstream. */
1140 if (IsInclinedSlope(cur_slope)) {
1141 DiagDirection slope_direction = GetInclinedSlopeDirection(cur_slope);
1142
1143 TileIndex upstream_tile = TileAddByDiagDir(tile, slope_direction);
1144 TileIndex downstream_tile = TileAddByDiagDir(tile, ReverseDiagDir(slope_direction));
1145
1146 /* Don't look outside the map. */
1147 if (!IsValidTile(upstream_tile) || !IsValidTile(downstream_tile)) return;
1148
1149 /* Downstream might be new ocean created by our terraforming, and it hasn't flooded yet. */
1150 bool downstream_is_ocean = GetTileZ(downstream_tile) == 0 && (GetTileSlope(downstream_tile) == SLOPE_FLAT || IsSlopeWithOneCornerRaised(GetTileSlope(downstream_tile)));
1151
1152 /* If downstream is dry, flat, and not ocean, try making it a river tile. */
1153 if (!IsWaterTile(downstream_tile) && !downstream_is_ocean) {
1154 /* If the tile upstream isn't flat, don't bother. */
1155 if (GetTileSlope(downstream_tile) != SLOPE_FLAT) return;
1156
1157 MakeRiverAndModifyDesertZoneAround(downstream_tile);
1158 }
1159
1160 /* If upstream is dry and flat, try making it a river tile. */
1161 if (!IsWaterTile(upstream_tile)) {
1162 /* If the tile upstream isn't flat, don't bother. */
1163 if (GetTileSlope(upstream_tile) != SLOPE_FLAT) return;
1164
1166 }
1167 }
1168
1169 /* If the tile slope matches the desired slope, add a river tile. */
1170 if (cur_slope == desired_slope) {
1172 }
1173}
1174
1181static bool FlowsDown(TileIndex begin, TileIndex end)
1182{
1183 assert(DistanceManhattan(begin, end) == 1);
1184
1185 auto [slope_end, height_end] = GetTileSlopeZ(end);
1186
1187 /* Slope either is inclined or flat; rivers don't support other slopes. */
1188 if (slope_end != SLOPE_FLAT && !IsInclinedSlope(slope_end)) return false;
1189
1190 auto [slope_begin, height_begin] = GetTileSlopeZ(begin);
1191
1192 /* It can't flow uphill. */
1193 if (height_end > height_begin) return false;
1194
1195 /* Slope continues, then it must be lower... */
1196 if (slope_end == slope_begin && height_end < height_begin) return true;
1197
1198 /* ... or either end must be flat. */
1199 return slope_end == SLOPE_FLAT || slope_begin == SLOPE_FLAT;
1200}
1201
1203class RiverBuilder : public AyStar {
1204protected:
1205 AyStarStatus EndNodeCheck(const PathNode &current) const override
1206 {
1207 return current.GetTile() == this->end ? AyStarStatus::FoundEndNode : AyStarStatus::Done;
1208 }
1209
1210 int32_t CalculateG(const AyStarNode &, const PathNode &) const override
1211 {
1213 }
1214
1215 int32_t CalculateH(const AyStarNode &current, const PathNode &) const override
1216 {
1217 return DistanceManhattan(this->end, current.tile);
1218 }
1219
1220 void GetNeighbours(const PathNode &current, std::vector<AyStarNode> &neighbours) const override
1221 {
1222 TileIndex tile = current.GetTile();
1223
1224 neighbours.clear();
1225 for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
1226 TileIndex t = tile + TileOffsByDiagDir(d);
1227 if (IsValidTile(t) && FlowsDown(tile, t)) {
1228 auto &neighbour = neighbours.emplace_back();
1229 neighbour.tile = t;
1230 neighbour.td = INVALID_TRACKDIR;
1231 }
1232 }
1233 }
1234
1235 void FoundEndNode(const PathNode &current) override
1236 {
1237 /* First, build the river without worrying about its width. */
1238 for (PathNode *path = current.parent; path != nullptr; path = path->parent) {
1239 TileIndex tile = path->GetTile();
1240 if (!IsWaterTile(tile)) {
1242 }
1243 }
1244
1245 /* If the river is a main river, go back along the path to widen it.
1246 * Don't make wide rivers if we're using the original landscape generator.
1247 */
1248 if (_settings_game.game_creation.land_generator != LG_ORIGINAL && this->main_river) {
1249 const uint long_river_length = _settings_game.game_creation.min_river_length * 4;
1250
1251 for (PathNode *path = current.parent; path != nullptr; path = path->parent) {
1252 TileIndex origin_tile = path->GetTile();
1253
1254 /* Check if we should widen river depending on how far we are away from the source. */
1255 uint current_river_length = DistanceManhattan(this->spring, origin_tile);
1256 uint diameter = std::min(3u, (current_river_length / (long_river_length / 3u)) + 1u);
1257 if (diameter <= 1) continue;
1258
1259 for (auto tile : SpiralTileSequence(origin_tile, diameter)) {
1260 RiverMakeWider(tile, origin_tile);
1261 }
1262 }
1263 }
1264 }
1265
1267
1268private:
1272
1273public:
1282 {
1283 RiverBuilder builder(end, spring, main_river);
1284 AyStarNode start;
1285 start.tile = begin;
1286 start.td = INVALID_TRACKDIR;
1287 builder.AddStartNode(&start, 0);
1288 builder.Main();
1289 }
1290};
1291
1299static std::tuple<bool, bool> FlowRiver(TileIndex spring, TileIndex begin, uint min_river_length)
1300{
1301 uint height_begin = TileHeight(begin);
1302
1303 if (IsWaterTile(begin)) {
1304 return { DistanceManhattan(spring, begin) > min_river_length, GetTileZ(begin) == 0 };
1305 }
1306
1307 FlatSet<TileIndex> marks;
1308 marks.insert(begin);
1309
1310 /* Breadth first search for the closest tile we can flow down to. */
1311 std::list<TileIndex> queue;
1312 queue.push_back(begin);
1313
1314 bool found = false;
1315 uint count = 0; // Number of tiles considered; to be used for lake location guessing.
1316 TileIndex end;
1317 do {
1318 end = queue.front();
1319 queue.pop_front();
1320
1321 uint height_end = TileHeight(end);
1322 if (IsTileFlat(end) && (height_end < height_begin || (height_end == height_begin && IsWaterTile(end)))) {
1323 found = true;
1324 break;
1325 }
1326
1327 for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
1328 TileIndex t = end + TileOffsByDiagDir(d);
1329 if (IsValidTile(t) && !marks.contains(t) && FlowsDown(end, t)) {
1330 marks.insert(t);
1331 count++;
1332 queue.push_back(t);
1333 }
1334 }
1335 } while (!queue.empty());
1336
1337 bool main_river = false;
1338 if (found) {
1339 /* Flow further down hill. */
1340 std::tie(found, main_river) = FlowRiver(spring, end, min_river_length);
1341 } else if (count > 32) {
1342 /* Maybe we can make a lake. Find the Nth of the considered tiles. */
1343 auto cit = marks.cbegin();
1344 std::advance(cit, RandomRange(count - 1));
1345 TileIndex lake_centre = *cit;
1346
1347 if (IsValidTile(lake_centre) &&
1348 /* A river, or lake, can only be built on flat slopes. */
1349 IsTileFlat(lake_centre) &&
1350 /* We want the lake to be built at the height of the river. */
1351 TileHeight(begin) == TileHeight(lake_centre) &&
1352 /* We don't want the lake at the entry of the valley. */
1353 lake_centre != begin &&
1354 /* We don't want lakes in the desert. */
1355 (_settings_game.game_creation.landscape != LandscapeType::Tropic || GetTropicZone(lake_centre) != TROPICZONE_DESERT) &&
1356 /* We only want a lake if the river is long enough. */
1357 DistanceManhattan(spring, lake_centre) > min_river_length) {
1358 end = lake_centre;
1360 uint diameter = RandomRange(8) + 3;
1361
1362 /* Run the loop twice, so artefacts from going circular in one direction get (mostly) hidden. */
1363 for (uint loops = 0; loops < 2; ++loops) {
1364 for (auto tile : SpiralTileSequence(lake_centre, diameter)) {
1365 MakeLake(tile, height_begin);
1366 }
1367 }
1368
1369 found = true;
1370 }
1371 }
1372
1373 marks.clear();
1374 if (found) RiverBuilder::Exec(begin, end, spring, main_river);
1375 return { found, main_river };
1376}
1377
1381static void CreateRivers()
1382{
1384 if (amount == 0) return;
1385
1387 const uint num_short_rivers = wells - std::max(1u, wells / 10);
1388 SetGeneratingWorldProgress(GWP_RIVER, wells + TILE_UPDATE_FREQUENCY / 64); // Include the tile loop calls below.
1389
1390 /* Try to create long rivers. */
1391 for (; wells > num_short_rivers; wells--) {
1393 bool done = false;
1394 for (int tries = 0; tries < 512; tries++) {
1395 for (auto t : SpiralTileSequence(RandomTile(), 8)) {
1396 if (FindSpring(t)) {
1397 done = std::get<0>(FlowRiver(t, t, _settings_game.game_creation.min_river_length * 4));
1398 break;
1399 }
1400 }
1401 if (done) break;
1402 }
1403 }
1404
1405 /* Try to create short rivers. */
1406 for (; wells != 0; wells--) {
1408 bool done = false;
1409 for (int tries = 0; tries < 128; tries++) {
1410 for (auto t : SpiralTileSequence(RandomTile(), 8)) {
1411 if (FindSpring(t)) {
1412 done = std::get<0>(FlowRiver(t, t, _settings_game.game_creation.min_river_length));
1413 break;
1414 }
1415 }
1416 if (done) break;
1417 }
1418 }
1419
1420 /* Widening rivers may have left some tiles requiring to be watered. */
1421 ConvertGroundTilesIntoWaterTiles();
1422
1423 /* Run tile loop to update the ground density. */
1424 for (uint i = 0; i != TILE_UPDATE_FREQUENCY; i++) {
1426 RunTileLoop();
1427 }
1428}
1429
1447static uint CalculateCoverageLine(uint coverage, uint edge_multiplier)
1448{
1449 /* Histogram of how many tiles per height level exist. */
1450 std::array<int, MAX_TILE_HEIGHT + 1> histogram = {};
1451 /* Histogram of how many neighbour tiles are lower than the tiles of the height level. */
1452 std::array<int, MAX_TILE_HEIGHT + 1> edge_histogram = {};
1453
1454 /* Build a histogram of the map height. */
1455 for (const auto tile : Map::Iterate()) {
1456 uint h = TileHeight(tile);
1457 histogram[h]++;
1458
1459 if (edge_multiplier != 0) {
1460 /* Check if any of our neighbours is below us. */
1461 for (DiagDirection dir = DIAGDIR_BEGIN; dir != DIAGDIR_END; dir++) {
1462 TileIndex neighbour_tile = AddTileIndexDiffCWrap(tile, TileIndexDiffCByDiagDir(dir));
1463 if (IsValidTile(neighbour_tile) && TileHeight(neighbour_tile) < h) {
1464 edge_histogram[h]++;
1465 }
1466 }
1467 }
1468 }
1469
1470 /* The amount of land we have is the map size minus the first (sea) layer. */
1471 uint land_tiles = Map::Size() - histogram[0];
1472 int best_score = land_tiles;
1473
1474 /* Our goal is the coverage amount of the land-mass. */
1475 int goal_tiles = land_tiles * coverage / 100;
1476
1477 /* We scan from top to bottom. */
1478 uint h = MAX_TILE_HEIGHT;
1479 uint best_h = h;
1480
1481 int current_tiles = 0;
1482 for (; h > 0; h--) {
1483 current_tiles += histogram[h];
1484 int current_score = goal_tiles - current_tiles;
1485
1486 /* Tropic grows from water and mountains into the desert. This is a
1487 * great visual, but it also means we* need to take into account how
1488 * much less desert tiles are being created if we are on this
1489 * height-level. We estimate this based on how many neighbouring
1490 * tiles are below us for a given length, assuming that is where
1491 * tropic is growing from.
1492 */
1493 if (edge_multiplier != 0 && h > 1) {
1494 /* From water tropic tiles grow for a few tiles land inward. */
1495 current_score -= edge_histogram[1] * edge_multiplier;
1496 /* Tropic tiles grow into the desert for a few tiles. */
1497 current_score -= edge_histogram[h] * edge_multiplier;
1498 }
1499
1500 if (std::abs(current_score) < std::abs(best_score)) {
1501 best_score = current_score;
1502 best_h = h;
1503 }
1504
1505 /* Always scan all height-levels, as h == 1 might give a better
1506 * score than any before. This is true for example with 0% desert
1507 * coverage. */
1508 }
1509
1510 return best_h;
1511}
1512
1517{
1518 /* We do not have snow sprites on coastal tiles, so never allow "1" as height. */
1520}
1521
1526static uint8_t CalculateDesertLine()
1527{
1528 /* CalculateCoverageLine() runs from top to bottom, so we need to invert the coverage. */
1530}
1531
1532bool GenerateLandscape(uint8_t mode)
1533{
1534 /* Number of steps of landscape generation */
1535 static constexpr uint GLS_HEIGHTMAP = 3;
1536 static constexpr uint GLS_TERRAGENESIS = 4;
1537 static constexpr uint GLS_ORIGINAL = 2;
1538 static constexpr uint GLS_TROPIC = 12;
1539 static constexpr uint GLS_OTHER = 0;
1540 uint steps = (_settings_game.game_creation.landscape == LandscapeType::Tropic) ? GLS_TROPIC : GLS_OTHER;
1541
1542 if (mode == GWM_HEIGHTMAP) {
1543 SetGeneratingWorldProgress(GWP_LANDSCAPE, steps + GLS_HEIGHTMAP);
1545 return false;
1546 }
1549 SetGeneratingWorldProgress(GWP_LANDSCAPE, steps + GLS_TERRAGENESIS);
1551 } else {
1552 SetGeneratingWorldProgress(GWP_LANDSCAPE, steps + GLS_ORIGINAL);
1554 for (uint x = 0; x < Map::SizeX(); x++) MakeVoid(TileXY(x, 0));
1555 for (uint y = 0; y < Map::SizeY(); y++) MakeVoid(TileXY(0, y));
1556 }
1558 case LandscapeType::Arctic: {
1559 uint32_t r = Random();
1560
1561 for (uint i = Map::ScaleBySize(GB(r, 0, 7) + 950); i != 0; --i) {
1562 GenerateTerrain(2, 0);
1563 }
1564
1565 uint flag = GB(r, 7, 2) | 4;
1566 for (uint i = Map::ScaleBySize(GB(r, 9, 7) + 450); i != 0; --i) {
1567 GenerateTerrain(4, flag);
1568 }
1569 break;
1570 }
1571
1572 case LandscapeType::Tropic: {
1573 uint32_t r = Random();
1574
1575 for (uint i = Map::ScaleBySize(GB(r, 0, 7) + 170); i != 0; --i) {
1576 GenerateTerrain(0, 0);
1577 }
1578
1579 uint flag = GB(r, 7, 2) | 4;
1580 for (uint i = Map::ScaleBySize(GB(r, 9, 8) + 1700); i != 0; --i) {
1581 GenerateTerrain(0, flag);
1582 }
1583
1584 flag ^= 2;
1585
1586 for (uint i = Map::ScaleBySize(GB(r, 17, 7) + 410); i != 0; --i) {
1587 GenerateTerrain(3, flag);
1588 }
1589 break;
1590 }
1591
1592 default: {
1593 uint32_t r = Random();
1594
1596 uint i = Map::ScaleBySize(GB(r, 0, 7) + (3 - _settings_game.difficulty.quantity_sea_lakes) * 256 + 100);
1597 for (; i != 0; --i) {
1598 /* Make sure we do not overflow. */
1599 GenerateTerrain(Clamp(_settings_game.difficulty.terrain_type, 0, 3), 0);
1600 }
1601 break;
1602 }
1603 }
1604 }
1605
1606 /* Do not call IncreaseGeneratingWorldProgress() before FixSlopes(),
1607 * it allows screen redraw. Drawing of broken slopes crashes the game */
1608 FixSlopes();
1611
1612 ConvertGroundTilesIntoWaterTiles();
1615
1617 case LandscapeType::Arctic:
1619 break;
1620
1621 case LandscapeType::Tropic: {
1622 uint desert_tropic_line = CalculateDesertLine();
1623 CreateDesertOrRainForest(desert_tropic_line);
1624 break;
1625 }
1626
1627 default:
1628 break;
1629 }
1630
1631 CreateRivers();
1632 return true;
1633}
1634
1635void OnTick_Town();
1636void OnTick_Trees();
1637void OnTick_Station();
1638void OnTick_Industry();
1639
1640void OnTick_Companies();
1641void OnTick_LinkGraph();
1642
1643void CallLandscapeTick()
1644{
1645 {
1647
1648 OnTick_Town();
1649 OnTick_Trees();
1650 OnTick_Station();
1651 OnTick_Industry();
1652 }
1653
1656}
void DeleteAnimatedTile(TileIndex tile, bool immediate)
Stops animation on the given tile.
Tile animation!
This file has the header for AyStar.
AyStarStatus
Return status of AyStar methods.
Definition aystar.h:25
@ FoundEndNode
An end node was found.
@ Done
Not an end-tile, or wrong direction.
debug_inline static constexpr uint GB(const T x, const uint8_t s, const uint8_t n)
Fetch n bits from x, started at bit s.
void ClearBridgeMiddle(Tile t)
Removes bridges from the given, that is bridges along the X and Y axis.
Definition bridge_map.h:103
AyStar search algorithm struct.
Definition aystar.h:44
AyStarStatus Main()
This is the function you call to run AyStar.
Definition aystar.cpp:132
void AddStartNode(AyStarNode *start_node, int g)
Adds a node from where to start an algorithm.
Definition aystar.cpp:161
constexpr bool Test(Tvalue_type value) const
Test if the value-th bit is set.
constexpr bool None() const
Test if none of the values are set.
constexpr Timpl & Reset()
Reset all bits.
constexpr Timpl & Set()
Set all bits.
constexpr bool Any(const Timpl &other) const
Test if any of the given values are set.
Common return value for all commands.
void AddCost(const Money &cost)
Adds the given cost to the cost of the command.
Money GetCost() const
The costs as made up to this moment.
bool Failed() const
Did this command fail?
Enum-as-bit-set wrapper.
Flat set implementation that uses a sorted vector for storage.
bool contains(const Tkey &key)
Test if a key exists in the set.
void insert(const Tkey &key)
Insert a key into the set.
RAII class for measuring multi-step elements of performance.
Search path and build river.
bool main_river
Whether the current river is a big river that others flow into.
TileIndex end
Destination for the river.
int32_t CalculateG(const AyStarNode &, const PathNode &) const override
Calculate the G-value for the AyStar algorithm.
void FoundEndNode(const PathNode &current) override
If the End Node is found, this function is called.
static void Exec(TileIndex begin, TileIndex end, TileIndex spring, bool main_river)
Actually build the river between the begin and end tiles using AyStar.
AyStarStatus EndNodeCheck(const PathNode &current) const override
Check whether the end-tile is found.
int32_t CalculateH(const AyStarNode &current, const PathNode &) const override
Calculate the H-value for the AyStar algorithm.
TileIndex spring
The current spring during river generation.
void GetNeighbours(const PathNode &current, std::vector< AyStarNode > &neighbours) const override
This function requests the tiles around the current tile.
Generate TileIndices around a center tile or tile area, with increasing distance.
static std::unique_ptr< TileIterator > Create(TileIndex corner1, TileIndex corner2, bool diagonal)
Create either an OrthogonalTileIterator or DiagonalTileIterator given the diagonal parameter.
Definition tilearea.cpp:291
static YearMonthDay ConvertDateToYMD(Date date)
Converts a Date to a Year, Month & Day.
static Date date
Current date in days (day counter).
static TickCounter counter
Monotonic counter, in ticks, since start of game.
Map accessors for 'clear' tiles.
bool IsClearGround(Tile t, ClearGround ct)
Set the type of clear tile.
Definition clear_map.h:59
@ CLEAR_GRASS
0-3
Definition clear_map.h:20
@ CLEAR_DESERT
1,3
Definition clear_map.h:25
void MakeClear(Tile t, ClearGround g, uint density)
Make a clear tile.
Definition clear_map.h:247
Functions related to commands.
static const CommandCost CMD_ERROR
Define a default return value for a failed command.
@ Execute
execute the given command
@ Bankrupt
company bankrupts, skip money check, skip vehicle on tile check in some cases
@ NoWater
don't allow building on water
@ Auto
don't allow building on structures
@ ForceClearTile
do not only remove the object on the tile, but also clear any water left on it
Money GetAvailableMoneyForCommand()
This functions returns the money which can be used to execute a command.
CompanyID _current_company
Company currently doing an action.
Functions related to companies.
void DirtyCompanyInfrastructureWindows(CompanyID company)
Redraw all windows with company infrastructure counts.
GUI Functions related to companies.
DiagDirection ReverseDiagDir(DiagDirection d)
Returns the reverse direction of the given DiagDirection.
DiagDirection ChangeDiagDir(DiagDirection d, DiagDirDiff delta)
Applies a difference on a DiagDirection.
Axis DiagDirToAxis(DiagDirection d)
Convert a DiagDirection to the axis.
DiagDirDiff
Enumeration for the difference between to DiagDirection.
@ DIAGDIRDIFF_END
Used for iterations.
@ DIAGDIRDIFF_90RIGHT
90 degrees right
@ DIAGDIRDIFF_90LEFT
90 degrees left
@ DIAGDIRDIFF_REVERSE
Reverse directions.
@ DIAGDIRDIFF_SAME
Same directions.
@ DIAGDIRDIFF_BEGIN
Used for iterations.
@ AXIS_Y
The y axis.
DiagDirection
Enumeration for diagonal directions.
@ DIAGDIR_NE
Northeast, upper right on your monitor.
@ DIAGDIR_NW
Northwest.
@ DIAGDIR_SE
Southeast.
@ DIAGDIR_END
Used for iterations.
@ DIAGDIR_BEGIN
Used for iterations.
@ DIAGDIR_SW
Southwest.
@ EXPENSES_CONSTRUCTION
Construction costs.
EffectVehicle * CreateEffectVehicleAbove(int x, int y, int z, EffectVehicleType type)
Create an effect vehicle above a particular location.
Functions related to effect vehicles.
@ EV_EXPLOSION_SMALL
Various explosions.
@ EV_EXPLOSION_LARGE
Various explosions.
Error reporting related functions.
Declarations for savegames operations.
Flat set container implementation.
Types for recording game performance data.
@ PFE_GL_LANDSCAPE
Time spent processing other world features.
Table used to generate deserts and/or rainforests.
bool _generating_world
Whether we are generating the map or not.
Definition genworld.cpp:74
Functions related to world/map generation.
void IncreaseGeneratingWorldProgress(GenWorldProgress cls)
Increases the current stage of the world generation with one.
@ LG_ORIGINAL
The original landscape generator.
Definition genworld.h:21
@ LG_TERRAGENESIS
TerraGenesis Perlin landscape generator.
Definition genworld.h:22
static const uint CUSTOM_SEA_LEVEL_NUMBER_DIFFICULTY
Value for custom sea level in difficulty settings.
Definition genworld.h:48
@ GWP_LANDSCAPE
Create the landscape.
Definition genworld.h:63
@ GWP_RIVER
Create the rivers.
Definition genworld.h:64
void SetGeneratingWorldProgress(GenWorldProgress cls, uint total)
Set the total of a stage of the world generation.
@ GWM_HEIGHTMAP
Generate a newgame from a heightmap.
Definition genworld.h:32
PauseModes _pause_mode
The current pause mode.
Definition gfx.cpp:50
uint32_t SpriteID
The number of a sprite, without mapping bits and colourtables.
Definition gfx_type.h:17
@ MapGen
Special sprite for the map generator.
uint8_t LowestSnowLine()
Get the lowest possible snow line height, either variable or static.
uint8_t GetSnowLine()
Get the current snow line, either variable or static.
bool IsSnowLineSet()
Has a snow line table already been loaded.
void ClearSnowLine()
Clear the variable snow line table and free the memory.
static std::unique_ptr< SnowLine > _snow_line
Description of the snow line throughout the year.
Definition landscape.cpp:97
void SetSnowLine(std::unique_ptr< SnowLine > &&snow_line)
Set a variable snow line, as loaded from a newgrf file.
uint8_t HighestSnowLine()
Get the highest possible snow line height, either variable or static.
void MarkWholeScreenDirty()
This function mark the whole screen as dirty.
Definition gfx.cpp:1535
void MarkTileDirtyByTile(TileIndex tile, int bridge_level_offset, int tile_height_override)
Mark a tile given by its index dirty for repaint.
bool LoadHeightmap(DetailedFileType dft, std::string_view filename)
Load a heightmap from file and change the map in its current dimensions to a landscape representing t...
void FixSlopes()
This function takes care of the fact that land in OpenTTD can never differ more than 1 in height.
Functions related to creating heightmaps from files.
static void MakeLake(TileIndex tile, uint height_lake)
Make a connected lake; fill all tiles in the circular tile search that are connected.
uint GetPartialPixelZ(int x, int y, Slope corners)
Determines height at given coordinate of a slope.
static std::tuple< bool, bool > FlowRiver(TileIndex spring, TileIndex begin, uint min_river_length)
Try to flow the river down from a given begin.
int GetSlopePixelZOutsideMap(int x, int y)
Return world z coordinate of a given point of a tile, also for tiles outside the map (virtual "black"...
static bool FlowsDown(TileIndex begin, TileIndex end)
Check whether a river at begin could (logically) flow down to end.
TrackStatus GetTileTrackStatus(TileIndex tile, TransportType mode, uint sub_mode, DiagDirection side)
Returns information about trackdirs and signal states.
void OnTick_Companies()
Called every tick for updating some company info.
static uint CalculateCoverageLine(uint coverage, uint edge_multiplier)
Calculate what height would be needed to cover N% of the landmass.
static void CalculateSnowLine()
Calculate the line from which snow begins.
static const uint TILE_UPDATE_FREQUENCY_LOG
The logarithm of how many ticks it takes between tile updates (log base 2).
Definition landscape.cpp:86
void ChangeTileOwner(TileIndex tile, Owner old_owner, Owner new_owner)
Change the owner of a tile.
static void RiverMakeWider(TileIndex tile, TileIndex origin_tile)
Widen a river by expanding into adjacent tiles via circular tile search.
void RunTileLoop()
Gradually iterate over all tiles on the map, calling their TileLoopProcs once every TILE_UPDATE_FREQU...
static bool FindSpring(TileIndex tile)
Find the spring of a river.
static void CreateRivers()
Actually (try to) create some rivers.
void DrawFoundation(TileInfo *ti, Foundation f)
Draw foundation f at tile ti.
int GetSlopeZInCorner(Slope tileh, Corner corner)
Determine the Z height of a corner relative to TileZ.
std::tuple< Slope, int > GetFoundationSlope(TileIndex tile)
Get slope of a tile on top of a (possible) foundation If a tile does not have a foundation,...
void GetSlopePixelZOnEdge(Slope tileh, DiagDirection edge, int &z1, int &z2)
Determine the Z height of the corners of a specific tile edge.
void OnTick_LinkGraph()
Spawn or join a link graph job or compress a link graph if any link graph is due to do so.
const TileTypeProcs *const _tile_type_procs[16]
Tile callback functions for each type of tile.
Definition landscape.cpp:66
Point InverseRemapCoords2(int x, int y, bool clamp_to_map, bool *clamped)
Map 2D viewport or smallmap coordinate to 3D world or tile coordinate.
const TileTypeProcs _tile_type_town_procs
Tile callback functions for a town.
Definition landscape.cpp:52
void OnTick_Town()
Iterate through all towns and call their tick handler.
Definition town_cmd.cpp:928
static uint8_t CalculateDesertLine()
Calculate the line (in height) between desert and tropic.
const uint8_t _slope_to_sprite_offset[32]
landscape slope => sprite
std::tuple< CommandCost, Money > CmdClearArea(DoCommandFlags flags, TileIndex tile, TileIndex start_tile, bool diagonal)
Clear a big piece of landscape.
const TileTypeProcs _tile_type_road_procs
Tile callback functions for road tiles.
Definition landscape.cpp:51
uint ApplyFoundationToSlope(Foundation f, Slope &s)
Applies a foundation to a slope.
bool GenerateLandscape(uint8_t mode)
CommandCost CmdLandscapeClear(DoCommandFlags flags, TileIndex tile)
Clear a piece of landscape.
static const uint TILE_UPDATE_FREQUENCY
How many ticks it takes between tile updates (has to be a power of 2).
Definition landscape.cpp:87
int GetSlopePixelZ(int x, int y, bool ground_vehicle)
Return world Z coordinate of a given point of a tile.
Functions related to OTTD's landscape.
std::tuple< Slope, int > GetFoundationPixelSlope(TileIndex tile)
Get slope of a tile on top of a (possible) foundation If a tile does not have a foundation,...
Definition landscape.h:65
uint ApplyPixelFoundationToSlope(Foundation f, Slope &s)
Applies a foundation to a slope.
Definition landscape.h:126
Point InverseRemapCoords(int x, int y)
Map 2D viewport or smallmap coordinate to 3D world or tile coordinate.
Definition landscape.h:109
Command definitions related to landscape (slopes etc.).
Types related to the landscape.
@ Random
Randomise borders.
TileIndex TileAddWrap(TileIndex tile, int addx, int addy)
This function checks if we add addx/addy to tile, if we do wrap around the edges.
Definition map.cpp:93
uint DistanceManhattan(TileIndex t0, TileIndex t1)
Gets the Manhattan distance between the two given tiles.
Definition map.cpp:142
TileIndex TileAddXY(TileIndex tile, int x, int y)
Adds a given offset to a tile.
Definition map_func.h:469
TileIndex AddTileIndexDiffCWrap(TileIndex tile, TileIndexDiffC diff)
Add a TileIndexDiffC to a TileIndex and returns the new one.
Definition map_func.h:514
static debug_inline TileIndex TileXY(uint x, uint y)
Returns the TileIndex of a coordinate.
Definition map_func.h:372
TileIndex TileAddByDiagDir(TileIndex tile, DiagDirection dir)
Adds a DiagDir to a tile.
Definition map_func.h:610
TileIndexDiff TileDiffXY(int x, int y)
Calculates an offset for the given coordinate(-offset).
Definition map_func.h:388
TileIndexDiffC TileIndexDiffCByDiagDir(DiagDirection dir)
Returns the TileIndexDiffC offset from a DiagDirection.
Definition map_func.h:482
#define RandomTile()
Get a valid random tile.
Definition map_func.h:651
static debug_inline uint TileY(TileIndex tile)
Get the Y component of a tile.
Definition map_func.h:424
static debug_inline uint TileX(TileIndex tile)
Get the X component of a tile.
Definition map_func.h:414
TileIndexDiff TileOffsByDiagDir(DiagDirection dir)
Convert a DiagDirection to a TileIndexDiff.
Definition map_func.h:569
static debug_inline TileIndex TileVirtXY(uint x, uint y)
Get a tile from the virtual XY-coordinate.
Definition map_func.h:403
static const uint MIN_MAP_SIZE_BITS
Minimal and maximal map width and height.
Definition map_type.h:37
static const uint MAX_MAP_SIZE_BITS
Maximal size of map is equal to 2 ^ MAX_MAP_SIZE_BITS.
Definition map_type.h:38
constexpr bool IsInsideBS(const T x, const size_t base, const size_t size)
Checks if a value is between a window started at some base point.
constexpr uint CeilDiv(uint a, uint b)
Computes ceil(a / b) for non-negative a and b.
constexpr T Clamp(const T a, const T min, const T max)
Clamp a value between an interval.
Definition math_func.hpp:79
Base for all objects.
ClearedObjectArea * FindClearedObject(TileIndex tile)
Find the entry in _cleared_object_areas which occupies a certain tile.
Pseudo random number generator.
uint32_t RandomRange(uint32_t limit, const std::source_location location=std::source_location::current())
Pick a random number between 0 and limit - 1, inclusive.
A number of safeguards to prevent using unsafe methods.
FileToSaveLoad _file_to_saveload
File to save or load in the openttd loop.
Definition saveload.cpp:66
Functions/types related to saving and loading games.
GameSettings _settings_game
Game settings of a running game or the scenario editor.
Definition settings.cpp:61
bool IsSpecialRailFoundation(Foundation f)
Tests if a foundation is a special rail foundation for single horizontal/vertical track.
Definition slope_func.h:345
Slope SlopeWithThreeCornersRaised(Corner corner)
Returns the slope with all except one corner raised.
Definition slope_func.h:206
Corner OppositeCorner(Corner corner)
Returns the opposite corner.
Definition slope_func.h:184
static constexpr Corner GetHalftileSlopeCorner(Slope s)
Returns the leveled halftile of a halftile slope.
Definition slope_func.h:148
static constexpr Slope RemoveHalftileSlope(Slope s)
Removes a halftile slope from a slope.
Definition slope_func.h:60
bool IsSlopeWithOneCornerRaised(Slope s)
Tests if a specific slope has exactly one corner raised.
Definition slope_func.h:88
bool IsNonContinuousFoundation(Foundation f)
Tests if a foundation is a non-continuous foundation, i.e.
Definition slope_func.h:320
Corner GetHighestSlopeCorner(Slope s)
Returns the highest corner of a slope (one corner raised or a steep slope).
Definition slope_func.h:126
Corner GetHalftileFoundationCorner(Foundation f)
Returns the halftile corner of a halftile-foundation.
Definition slope_func.h:333
bool IsLeveledFoundation(Foundation f)
Tests if the foundation is a leveled foundation.
Definition slope_func.h:298
bool IsFoundation(Foundation f)
Tests for FOUNDATION_NONE.
Definition slope_func.h:287
static constexpr bool IsSteepSlope(Slope s)
Checks if a slope is steep.
Definition slope_func.h:36
bool IsSlopeWithThreeCornersRaised(Slope s)
Tests if a specific slope has exactly three corners raised.
Definition slope_func.h:195
bool IsInclinedSlope(Slope s)
Tests if a specific slope is an inclined slope.
Definition slope_func.h:228
Slope SteepSlope(Corner corner)
Returns a specific steep slope.
Definition slope_func.h:217
Corner GetRailFoundationCorner(Foundation f)
Returns the track corner of a special rail foundation.
Definition slope_func.h:356
static constexpr bool IsHalftileSlope(Slope s)
Checks for non-continuous slope on halftile foundations.
Definition slope_func.h:47
static constexpr int GetSlopeMaxPixelZ(Slope s)
Returns the height of the highest corner of a slope relative to TileZ (= minimal height)
Definition slope_func.h:173
DiagDirection GetInclinedSlopeDirection(Slope s)
Returns the direction of an inclined slope.
Definition slope_func.h:239
static constexpr Slope HalftileSlope(Slope s, Corner corner)
Adds a halftile slope to a slope.
Definition slope_func.h:274
Slope ComplementSlope(Slope s)
Return the complement of a slope.
Definition slope_func.h:76
Slope SlopeWithOneCornerRaised(Corner corner)
Returns the slope with a specific corner raised.
Definition slope_func.h:99
bool IsInclinedFoundation(Foundation f)
Tests if the foundation is an inclined foundation.
Definition slope_func.h:309
Corner
Enumeration of tile corners.
Definition slope_type.h:22
Slope
Enumeration for the slope-type.
Definition slope_type.h:48
@ SLOPE_W
the west corner of the tile is raised
Definition slope_type.h:50
@ SLOPE_ELEVATED
bit mask containing all 'simple' slopes
Definition slope_type.h:61
@ SLOPE_NS
north and south corner are raised
Definition slope_type.h:60
@ SLOPE_E
the east corner of the tile is raised
Definition slope_type.h:52
@ SLOPE_WSE
west, south and east corner are raised
Definition slope_type.h:63
@ SLOPE_S
the south corner of the tile is raised
Definition slope_type.h:51
@ SLOPE_N
the north corner of the tile is raised
Definition slope_type.h:53
@ SLOPE_SEN
south, east and north corner are raised
Definition slope_type.h:64
@ SLOPE_ENW
east, north and west corner are raised
Definition slope_type.h:65
@ SLOPE_SW
south and west corner are raised
Definition slope_type.h:56
@ SLOPE_FLAT
a flat tile
Definition slope_type.h:49
@ SLOPE_STEEP_W
a steep slope falling to east (from west)
Definition slope_type.h:66
@ SLOPE_NE
north and east corner are raised
Definition slope_type.h:58
@ SLOPE_STEEP_E
a steep slope falling to west (from east)
Definition slope_type.h:68
@ SLOPE_SE
south and east corner are raised
Definition slope_type.h:57
@ SLOPE_NWS
north, west and south corner are raised
Definition slope_type.h:62
@ SLOPE_NW
north and west corner are raised
Definition slope_type.h:55
@ SLOPE_STEEP_N
a steep slope falling to south (from north)
Definition slope_type.h:69
@ SLOPE_STEEP_S
a steep slope falling to north (from south)
Definition slope_type.h:67
@ SLOPE_EW
east and west corner are raised
Definition slope_type.h:59
@ SLOPE_STEEP
indicates the slope is steep
Definition slope_type.h:54
Foundation
Enumeration for Foundations.
Definition slope_type.h:93
@ FOUNDATION_INCLINED_X
The tile has an along X-axis inclined foundation.
Definition slope_type.h:96
@ FOUNDATION_STEEP_BOTH
The tile has a steep slope. The lowest corner is raised by a foundation and the upper halftile is lev...
Definition slope_type.h:101
@ FOUNDATION_INCLINED_Y
The tile has an along Y-axis inclined foundation.
Definition slope_type.h:97
@ FOUNDATION_STEEP_LOWER
The tile has a steep slope. The lowest corner is raised by a foundation to allow building railroad on...
Definition slope_type.h:98
Functions to cache sprites in memory.
This file contains all sprite-related enums and defines.
static const SpriteID SPR_HALFTILE_FOUNDATION_BASE
Halftile foundations.
Definition sprites.h:212
Functions related to stations.
Definition of base types and functions in a cross-platform compatible way.
#define lengthof(array)
Return the length of an fixed size array.
Definition stdafx.h:271
Keeps track of removed objects during execution/testruns of commands.
Definition object_base.h:86
TileIndex first_tile
The first tile being cleared, which then causes the whole object to be cleared.
Definition object_base.h:87
uint32_t clear_limit
Amount of tiles we can (still) clear (times 65536).
bool freeform_edges
allow terraforming the tiles at the map edges
uint8_t map_height_limit
the maximum allowed heightlevel
uint8_t terrain_type
the mountainousness of the landscape
uint8_t quantity_sea_lakes
the amount of seas/lakes
FiosType ftype
File type.
Definition saveload.h:419
std::string name
Name of the file.
Definition saveload.h:420
DetailedFileType detailed
Detailed file type.
Definition fileio_type.h:64
uint8_t amount_of_rivers
the amount of rivers
uint8_t min_river_length
the minimum river length
uint8_t snow_coverage
the amount of snow coverage on the map
uint8_t desert_coverage
the amount of desert coverage on the map
LandscapeType landscape
the landscape we're currently in
uint8_t snow_line_height
the configured snow line height (deduced from "snow_coverage")
uint8_t land_generator
the landscape generator
uint8_t river_route_random
the amount of randomicity for the route finding
ConstructionSettings construction
construction of things in-game
DifficultySettings difficulty
settings related to the difficulty
GameCreationSettings game_creation
settings used during the creation of a game (map)
Size related data of the map.
Definition map_func.h:206
static uint ScaleBySize(uint n)
Scales the given value by the map size, where the given value is for a 256 by 256 map.
Definition map_func.h:327
static uint SizeY()
Get the size of the map along the Y.
Definition map_func.h:278
static IterateWrapper Iterate()
Returns an iterable ensemble of all Tiles.
Definition map_func.h:362
static debug_inline uint SizeX()
Get the size of the map along the X.
Definition map_func.h:269
static debug_inline uint LogX()
Logarithm of the map size along the X side.
Definition map_func.h:250
static uint LogY()
Logarithm of the map size along the y side.
Definition map_func.h:260
static uint MaxY()
Gets the maximum Y coordinate within the map, including MP_VOID.
Definition map_func.h:305
static debug_inline uint Size()
Get the size of the map.
Definition map_func.h:287
static debug_inline uint MaxX()
Gets the maximum X coordinate within the map, including MP_VOID.
Definition map_func.h:296
Coordinates of a point in 2D.
static Titem * Get(auto index)
Returns Titem with given index.
static bool IsValidID(auto index)
Tests whether given index can be used to get valid (non-nullptr) Titem.
static Titem * GetIfValid(auto index)
Returns Titem with given index.
Data structure describing a sprite.
Definition spritecache.h:17
uint16_t width
Width of the sprite.
Definition spritecache.h:19
uint16_t height
Height of the sprite.
Definition spritecache.h:18
std::byte data[]
Sprite data.
Definition spritecache.h:22
Tile description for the 'land area information' tool.
Definition tile_cmd.h:38
Tile information, used while rendering the tile.
Definition tile_cmd.h:29
int z
Height.
Definition tile_cmd.h:34
int x
X position of the tile in unit coordinates.
Definition tile_cmd.h:30
Slope tileh
Slope of the tile.
Definition tile_cmd.h:32
TileIndex tile
Tile index.
Definition tile_cmd.h:33
int y
Y position of the tile in unit coordinates.
Definition tile_cmd.h:31
Set of callback functions for performing tile operations of a given tile type.
Definition tile_cmd.h:144
GetTileDescProc * get_tile_desc_proc
Get a description of a tile (for the 'land area information' tool)
Definition tile_cmd.h:149
GetTileTrackStatusProc * get_tile_track_status_proc
Get available tracks and status of a tile.
Definition tile_cmd.h:150
Command definitions related to terraforming.
void GenerateTerrainPerlin()
The main new land generator using Perlin noise.
Definition tgp.cpp:979
Functions for the Perlin noise enhanced map generator.
bool MayAnimateTile(TileIndex tile)
Test if a tile may be animated.
Definition tile_cmd.h:188
bool IsTileFlat(TileIndex tile, int *h)
Check if a given tile is flat.
Definition tile_map.cpp:95
std::tuple< Slope, int > GetTileSlopeZ(TileIndex tile)
Return the slope of a given tile inside the map.
Definition tile_map.cpp:55
int GetTileMaxZ(TileIndex t)
Get top height of the tile inside the map.
Definition tile_map.cpp:136
int GetTileZ(TileIndex tile)
Get bottom height of the tile.
Definition tile_map.cpp:116
Owner GetTileOwner(Tile tile)
Returns the owner of a tile.
Definition tile_map.h:178
static debug_inline TileType GetTileType(Tile tile)
Get the tiletype of a given tile.
Definition tile_map.h:96
bool IsValidTile(Tile tile)
Checks if a tile is valid.
Definition tile_map.h:161
TropicZone GetTropicZone(Tile tile)
Get the tropic zone.
Definition tile_map.h:238
void SetTileHeight(Tile tile, uint height)
Sets the height of a tile.
Definition tile_map.h:57
static debug_inline bool IsTileType(Tile tile, TileType type)
Checks if a tile is a given tiletype.
Definition tile_map.h:150
Slope GetTileSlope(TileIndex tile)
Return the slope of a given tile inside the map.
Definition tile_map.h:279
void SetTropicZone(Tile tile, TropicZone type)
Set the tropic zone.
Definition tile_map.h:225
static debug_inline uint TileHeight(Tile tile)
Returns the height of a tile.
Definition tile_map.h:29
static const uint TILE_PIXELS
Pixel distance between tile columns/rows in ZOOM_BASE.
Definition tile_type.h:17
static const uint TILE_HEIGHT
Height of a height level in world coordinate AND in pixels in ZOOM_BASE.
Definition tile_type.h:18
static const uint TILE_SIZE
Tile size in world coordinates.
Definition tile_type.h:15
static const uint MAX_TILE_HEIGHT
Maximum allowed tile height.
Definition tile_type.h:24
@ TROPICZONE_RAINFOREST
Rainforest tile.
Definition tile_type.h:79
@ TROPICZONE_DESERT
Tile is desert.
Definition tile_type.h:78
@ TROPICZONE_NORMAL
Normal tropiczone.
Definition tile_type.h:77
constexpr TileIndex INVALID_TILE
The very nice invalid tile marker.
Definition tile_type.h:95
@ MP_CLEAR
A tile without any structures, i.e. grass, rocks, farm fields etc.
Definition tile_type.h:48
@ MP_WATER
Water tile.
Definition tile_type.h:54
@ MP_VOID
Invisible tiles at the SW and SE border.
Definition tile_type.h:55
Definition of the game-calendar-timer.
Definition of the tick-based game-timer.
@ INVALID_TRACKDIR
Flag for an invalid trackdir.
Definition track_type.h:85
TransportType
Available types of transport.
void OffsetGroundSprite(int x, int y)
Called when a foundation has been drawn for the current tile.
Definition viewport.cpp:591
void AddSortableSpriteToDraw(SpriteID image, PaletteID pal, int x, int y, int w, int h, int dz, int z, bool transparent, int bb_offset_x, int bb_offset_y, int bb_offset_z, const SubSprite *sub)
Draw a (transparent) sprite at given coordinates with a given bounding box.
Definition viewport.cpp:663
Functions related to (drawing on) viewports.
Map accessors for void tiles.
void MakeVoid(Tile t)
Make a nice void tile ;)
Definition void_map.h:19
Functions related to water (management)
void ClearNeighbourNonFloodingStates(TileIndex tile)
Clear non-flooding state of the tiles around a tile.
Definition water_cmd.cpp:97
void MakeRiverAndModifyDesertZoneAround(TileIndex tile)
Make a river tile and remove desert directly around it.
bool IsTileOnWater(Tile t)
Tests if the tile was built on water.
Definition water_map.h:136
bool IsRiver(Tile t)
Is it a river water tile?
Definition water_map.h:180
@ WATER_CLASS_CANAL
Canal.
Definition water_map.h:41
bool HasTileWaterClass(Tile t)
Checks whether the tile has an waterclass associated.
Definition water_map.h:101
bool IsCanal(Tile t)
Is it a canal tile?
Definition water_map.h:169
WaterClass GetWaterClass(Tile t)
Get the water class at a tile.
Definition water_map.h:112
bool IsCoastTile(Tile t)
Is it a coast tile.
Definition water_map.h:211
bool IsDockingTile(Tile t)
Checks whether the tile is marked as a dockling tile.
Definition water_map.h:371
bool IsWaterTile(Tile t)
Is it a water tile with plain water?
Definition water_map.h:190
void InvalidateWaterRegion(TileIndex tile)
Marks the water region that tile is part of as invalid.
Handles dividing the water in the map into regions to assist pathfinding.