OpenTTD Source  20241108-master-g80f628063a
newgrf_engine.cpp
Go to the documentation of this file.
1 /*
2  * This file is part of OpenTTD.
3  * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
4  * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
5  * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
6  */
7 
10 #include "stdafx.h"
11 #include "debug.h"
12 #include "train.h"
13 #include "roadveh.h"
14 #include "company_func.h"
15 #include "newgrf_cargo.h"
16 #include "newgrf_spritegroup.h"
18 #include "vehicle_func.h"
19 #include "core/random_func.hpp"
20 #include "core/container_func.hpp"
21 #include "aircraft.h"
22 #include "station_base.h"
23 #include "company_base.h"
24 #include "newgrf_railtype.h"
25 #include "newgrf_roadtype.h"
26 #include "ship.h"
27 
28 #include "safeguards.h"
29 
30 void SetWagonOverrideSprites(EngineID engine, CargoID cargo, const SpriteGroup *group, std::span<EngineID> engine_ids)
31 {
32  Engine *e = Engine::Get(engine);
33 
34  assert(cargo < NUM_CARGO + 2); // Include SpriteGroupCargo::SG_DEFAULT and SpriteGroupCargo::SG_PURCHASE pseudo cargoes.
35 
36  WagonOverride *wo = &e->overrides.emplace_back();
37  wo->group = group;
38  wo->cargo = cargo;
39  wo->engines.assign(engine_ids.begin(), engine_ids.end());
40 }
41 
42 const SpriteGroup *GetWagonOverrideSpriteSet(EngineID engine, CargoID cargo, EngineID overriding_engine)
43 {
44  const Engine *e = Engine::Get(engine);
45 
46  for (const WagonOverride &wo : e->overrides) {
47  if (wo.cargo != cargo && wo.cargo != SpriteGroupCargo::SG_DEFAULT) continue;
48  if (std::find(wo.engines.begin(), wo.engines.end(), overriding_engine) != wo.engines.end()) return wo.group;
49  }
50  return nullptr;
51 }
52 
53 void SetCustomEngineSprites(EngineID engine, uint8_t cargo, const SpriteGroup *group)
54 {
55  Engine *e = Engine::Get(engine);
56  assert(cargo < std::size(e->grf_prop.spritegroup));
57 
58  if (e->grf_prop.spritegroup[cargo] != nullptr) {
59  GrfMsg(6, "SetCustomEngineSprites: engine {} cargo {} already has group -- replacing", engine, cargo);
60  }
61  e->grf_prop.spritegroup[cargo] = group;
62 }
63 
64 
71 void SetEngineGRF(EngineID engine, const GRFFile *file)
72 {
73  Engine *e = Engine::Get(engine);
74  e->grf_prop.grffile = file;
75 }
76 
77 
78 static int MapOldSubType(const Vehicle *v)
79 {
80  switch (v->type) {
81  case VEH_TRAIN:
82  if (Train::From(v)->IsEngine()) return 0;
83  if (Train::From(v)->IsFreeWagon()) return 4;
84  return 2;
85  case VEH_ROAD:
86  case VEH_SHIP: return 0;
87  case VEH_AIRCRAFT:
88  case VEH_DISASTER: return v->subtype;
89  case VEH_EFFECT: return v->subtype << 1;
90  default: NOT_REACHED();
91  }
92 }
93 
94 
95 /* TTDP style aircraft movement states for GRF Action 2 Var 0xE2 */
96 enum TTDPAircraftMovementStates {
97  AMS_TTDP_HANGAR,
98  AMS_TTDP_TO_HANGAR,
99  AMS_TTDP_TO_PAD1,
100  AMS_TTDP_TO_PAD2,
101  AMS_TTDP_TO_PAD3,
102  AMS_TTDP_TO_ENTRY_2_AND_3,
103  AMS_TTDP_TO_ENTRY_2_AND_3_AND_H,
104  AMS_TTDP_TO_JUNCTION,
105  AMS_TTDP_LEAVE_RUNWAY,
106  AMS_TTDP_TO_INWAY,
107  AMS_TTDP_TO_RUNWAY,
108  AMS_TTDP_TO_OUTWAY,
109  AMS_TTDP_WAITING,
110  AMS_TTDP_TAKEOFF,
111  AMS_TTDP_TO_TAKEOFF,
112  AMS_TTDP_CLIMBING,
113  AMS_TTDP_FLIGHT_APPROACH,
114  AMS_TTDP_UNUSED_0x11,
115  AMS_TTDP_FLIGHT_TO_TOWER,
116  AMS_TTDP_UNUSED_0x13,
117  AMS_TTDP_FLIGHT_FINAL,
118  AMS_TTDP_FLIGHT_DESCENT,
119  AMS_TTDP_BRAKING,
120  AMS_TTDP_HELI_TAKEOFF_AIRPORT,
121  AMS_TTDP_HELI_TO_TAKEOFF_AIRPORT,
122  AMS_TTDP_HELI_LAND_AIRPORT,
123  AMS_TTDP_HELI_TAKEOFF_HELIPORT,
124  AMS_TTDP_HELI_TO_TAKEOFF_HELIPORT,
125  AMS_TTDP_HELI_LAND_HELIPORT,
126 };
127 
128 
133 static uint8_t MapAircraftMovementState(const Aircraft *v)
134 {
135  const Station *st = GetTargetAirportIfValid(v);
136  if (st == nullptr) return AMS_TTDP_FLIGHT_TO_TOWER;
137 
138  const AirportFTAClass *afc = st->airport.GetFTA();
139  uint16_t amdflag = afc->MovingData(v->pos)->flag;
140 
141  switch (v->state) {
142  case HANGAR:
143  /* The international airport is a special case as helicopters can land in
144  * front of the hangar. Helicopters also change their air.state to
145  * AMED_HELI_LOWER some time before actually descending. */
146 
147  /* This condition only occurs for helicopters, during descent,
148  * to a landing by the hangar of an international airport. */
149  if (amdflag & AMED_HELI_LOWER) return AMS_TTDP_HELI_LAND_AIRPORT;
150 
151  /* This condition only occurs for helicopters, before starting descent,
152  * to a landing by the hangar of an international airport. */
153  if (amdflag & AMED_SLOWTURN) return AMS_TTDP_FLIGHT_TO_TOWER;
154 
155  /* The final two conditions apply to helicopters or aircraft.
156  * Has reached hangar? */
157  if (amdflag & AMED_EXACTPOS) return AMS_TTDP_HANGAR;
158 
159  /* Still moving towards hangar. */
160  return AMS_TTDP_TO_HANGAR;
161 
162  case TERM1:
163  if (amdflag & AMED_EXACTPOS) return AMS_TTDP_TO_PAD1;
164  return AMS_TTDP_TO_JUNCTION;
165 
166  case TERM2:
167  if (amdflag & AMED_EXACTPOS) return AMS_TTDP_TO_PAD2;
168  return AMS_TTDP_TO_ENTRY_2_AND_3_AND_H;
169 
170  case TERM3:
171  case TERM4:
172  case TERM5:
173  case TERM6:
174  case TERM7:
175  case TERM8:
176  /* TTDPatch only has 3 terminals, so treat these states the same */
177  if (amdflag & AMED_EXACTPOS) return AMS_TTDP_TO_PAD3;
178  return AMS_TTDP_TO_ENTRY_2_AND_3_AND_H;
179 
180  case HELIPAD1:
181  case HELIPAD2:
182  case HELIPAD3:
183  /* Will only occur for helicopters.*/
184  if (amdflag & AMED_HELI_LOWER) return AMS_TTDP_HELI_LAND_AIRPORT; // Descending.
185  if (amdflag & AMED_SLOWTURN) return AMS_TTDP_FLIGHT_TO_TOWER; // Still hasn't started descent.
186  return AMS_TTDP_TO_JUNCTION; // On the ground.
187 
188  case TAKEOFF: // Moving to takeoff position.
189  return AMS_TTDP_TO_OUTWAY;
190 
191  case STARTTAKEOFF: // Accelerating down runway.
192  return AMS_TTDP_TAKEOFF;
193 
194  case ENDTAKEOFF: // Ascent
195  return AMS_TTDP_CLIMBING;
196 
197  case HELITAKEOFF: // Helicopter is moving to take off position.
198  if (afc->delta_z == 0) {
199  return amdflag & AMED_HELI_RAISE ?
200  AMS_TTDP_HELI_TAKEOFF_AIRPORT : AMS_TTDP_TO_JUNCTION;
201  } else {
202  return AMS_TTDP_HELI_TAKEOFF_HELIPORT;
203  }
204 
205  case FLYING:
206  return amdflag & AMED_HOLD ? AMS_TTDP_FLIGHT_APPROACH : AMS_TTDP_FLIGHT_TO_TOWER;
207 
208  case LANDING: // Descent
209  return AMS_TTDP_FLIGHT_DESCENT;
210 
211  case ENDLANDING: // On the runway braking
212  if (amdflag & AMED_BRAKE) return AMS_TTDP_BRAKING;
213  /* Landed - moving off runway */
214  return AMS_TTDP_TO_INWAY;
215 
216  case HELILANDING:
217  case HELIENDLANDING: // Helicoptor is descending.
218  if (amdflag & AMED_HELI_LOWER) {
219  return afc->delta_z == 0 ?
220  AMS_TTDP_HELI_LAND_AIRPORT : AMS_TTDP_HELI_LAND_HELIPORT;
221  } else {
222  return AMS_TTDP_FLIGHT_TO_TOWER;
223  }
224 
225  default:
226  return AMS_TTDP_HANGAR;
227  }
228 }
229 
230 
231 /* TTDP style aircraft movement action for GRF Action 2 Var 0xE6 */
232 enum TTDPAircraftMovementActions {
233  AMA_TTDP_IN_HANGAR,
234  AMA_TTDP_ON_PAD1,
235  AMA_TTDP_ON_PAD2,
236  AMA_TTDP_ON_PAD3,
237  AMA_TTDP_HANGAR_TO_PAD1,
238  AMA_TTDP_HANGAR_TO_PAD2,
239  AMA_TTDP_HANGAR_TO_PAD3,
240  AMA_TTDP_LANDING_TO_PAD1,
241  AMA_TTDP_LANDING_TO_PAD2,
242  AMA_TTDP_LANDING_TO_PAD3,
243  AMA_TTDP_PAD1_TO_HANGAR,
244  AMA_TTDP_PAD2_TO_HANGAR,
245  AMA_TTDP_PAD3_TO_HANGAR,
246  AMA_TTDP_PAD1_TO_TAKEOFF,
247  AMA_TTDP_PAD2_TO_TAKEOFF,
248  AMA_TTDP_PAD3_TO_TAKEOFF,
249  AMA_TTDP_HANGAR_TO_TAKOFF,
250  AMA_TTDP_LANDING_TO_HANGAR,
251  AMA_TTDP_IN_FLIGHT,
252 };
253 
254 
260 static uint8_t MapAircraftMovementAction(const Aircraft *v)
261 {
262  switch (v->state) {
263  case HANGAR:
264  return (v->cur_speed > 0) ? AMA_TTDP_LANDING_TO_HANGAR : AMA_TTDP_IN_HANGAR;
265 
266  case TERM1:
267  case HELIPAD1:
268  return (v->current_order.IsType(OT_LOADING)) ? AMA_TTDP_ON_PAD1 : AMA_TTDP_LANDING_TO_PAD1;
269 
270  case TERM2:
271  case HELIPAD2:
272  return (v->current_order.IsType(OT_LOADING)) ? AMA_TTDP_ON_PAD2 : AMA_TTDP_LANDING_TO_PAD2;
273 
274  case TERM3:
275  case TERM4:
276  case TERM5:
277  case TERM6:
278  case TERM7:
279  case TERM8:
280  case HELIPAD3:
281  return (v->current_order.IsType(OT_LOADING)) ? AMA_TTDP_ON_PAD3 : AMA_TTDP_LANDING_TO_PAD3;
282 
283  case TAKEOFF: // Moving to takeoff position
284  case STARTTAKEOFF: // Accelerating down runway
285  case ENDTAKEOFF: // Ascent
286  case HELITAKEOFF:
287  /* @todo Need to find which terminal (or hangar) we've come from. How? */
288  return AMA_TTDP_PAD1_TO_TAKEOFF;
289 
290  case FLYING:
291  return AMA_TTDP_IN_FLIGHT;
292 
293  case LANDING: // Descent
294  case ENDLANDING: // On the runway braking
295  case HELILANDING:
296  case HELIENDLANDING:
297  /* @todo Need to check terminal we're landing to. Is it known yet? */
298  return (v->current_order.IsType(OT_GOTO_DEPOT)) ?
299  AMA_TTDP_LANDING_TO_HANGAR : AMA_TTDP_LANDING_TO_PAD1;
300 
301  default:
302  return AMA_TTDP_IN_HANGAR;
303  }
304 }
305 
306 
307 /* virtual */ uint32_t VehicleScopeResolver::GetRandomBits() const
308 {
309  return this->v == nullptr ? 0 : this->v->random_bits;
310 }
311 
312 /* virtual */ uint32_t VehicleScopeResolver::GetTriggers() const
313 {
314  return this->v == nullptr ? 0 : this->v->waiting_triggers;
315 }
316 
317 
319 {
320  switch (scope) {
321  case VSG_SCOPE_SELF: return &this->self_scope;
322  case VSG_SCOPE_PARENT: return &this->parent_scope;
323  case VSG_SCOPE_RELATIVE: {
324  int32_t count = GB(relative, 0, 4);
325  if (this->self_scope.v != nullptr && (relative != this->cached_relative_count || count == 0)) {
326  /* Note: This caching only works as long as the VSG_SCOPE_RELATIVE cannot be used in
327  * VarAct2 with procedure calls. */
328  if (count == 0) count = GetRegister(0x100);
329 
330  const Vehicle *v = nullptr;
331  switch (GB(relative, 6, 2)) {
332  default: NOT_REACHED();
333  case 0x00: // count back (away from the engine), starting at this vehicle
334  v = this->self_scope.v;
335  break;
336  case 0x01: // count forward (toward the engine), starting at this vehicle
337  v = this->self_scope.v;
338  count = -count;
339  break;
340  case 0x02: // count back, starting at the engine
341  v = this->parent_scope.v;
342  break;
343  case 0x03: { // count back, starting at the first vehicle in this chain of vehicles with the same ID, as for vehicle variable 41
344  const Vehicle *self = this->self_scope.v;
345  for (const Vehicle *u = self->First(); u != self; u = u->Next()) {
346  if (u->engine_type != self->engine_type) {
347  v = nullptr;
348  } else {
349  if (v == nullptr) v = u;
350  }
351  }
352  if (v == nullptr) v = self;
353  break;
354  }
355  }
356  this->relative_scope.SetVehicle(v->Move(count));
357  }
358  return &this->relative_scope;
359  }
360  default: return ResolverObject::GetScope(scope, relative);
361  }
362 }
363 
373 static const Livery *LiveryHelper(EngineID engine, const Vehicle *v)
374 {
375  const Livery *l;
376 
377  if (v == nullptr) {
378  if (!Company::IsValidID(_current_company)) return nullptr;
379  l = GetEngineLivery(engine, _current_company, INVALID_ENGINE, nullptr, LIT_ALL);
380  } else if (v->IsGroundVehicle()) {
382  } else {
384  }
385 
386  return l;
387 }
388 
396 static uint32_t PositionHelper(const Vehicle *v, bool consecutive)
397 {
398  const Vehicle *u;
399  uint8_t chain_before = 0;
400  uint8_t chain_after = 0;
401 
402  for (u = v->First(); u != v; u = u->Next()) {
403  chain_before++;
404  if (consecutive && u->engine_type != v->engine_type) chain_before = 0;
405  }
406 
407  while (u->Next() != nullptr && (!consecutive || u->Next()->engine_type == v->engine_type)) {
408  chain_after++;
409  u = u->Next();
410  }
411 
412  return chain_before | chain_after << 8 | (chain_before + chain_after + consecutive) << 16;
413 }
414 
415 static uint32_t VehicleGetVariable(Vehicle *v, const VehicleScopeResolver *object, uint8_t variable, uint32_t parameter, bool &available)
416 {
417  /* Calculated vehicle parameters */
418  switch (variable) {
419  case 0x25: // Get engine GRF ID
420  return v->GetGRFID();
421 
422  case 0x40: // Get length of consist
426  }
428 
429  case 0x41: // Get length of same consecutive wagons
433  }
435 
436  case 0x42: { // Consist cargo information
438  std::array<uint8_t, NUM_CARGO> common_cargoes{};
439  uint8_t cargo_classes = 0;
440  uint8_t user_def_data = 0;
441 
442  for (const Vehicle *u = v; u != nullptr; u = u->Next()) {
443  if (v->type == VEH_TRAIN) user_def_data |= Train::From(u)->tcache.user_def_data;
444 
445  /* Skip empty engines */
446  if (!u->GetEngine()->CanCarryCargo()) continue;
447 
448  cargo_classes |= CargoSpec::Get(u->cargo_type)->classes;
449  common_cargoes[u->cargo_type]++;
450  }
451 
452  /* Pick the most common cargo type */
453  auto cargo_it = std::max_element(std::begin(common_cargoes), std::end(common_cargoes));
454  /* Return INVALID_CARGO if nothing is carried */
455  CargoID common_cargo_type = (*cargo_it == 0) ? INVALID_CARGO : static_cast<CargoID>(std::distance(std::begin(common_cargoes), cargo_it));
456 
457  /* Count subcargo types of common_cargo_type */
458  std::array<uint8_t, UINT8_MAX + 1> common_subtypes{};
459  for (const Vehicle *u = v; u != nullptr; u = u->Next()) {
460  /* Skip empty engines and engines not carrying common_cargo_type */
461  if (u->cargo_type != common_cargo_type || !u->GetEngine()->CanCarryCargo()) continue;
462 
463  common_subtypes[u->cargo_subtype]++;
464  }
465 
466  /* Pick the most common subcargo type*/
467  auto subtype_it = std::max_element(std::begin(common_subtypes), std::end(common_subtypes));
468  /* Return UINT8_MAX if nothing is carried */
469  uint8_t common_subtype = (*subtype_it == 0) ? UINT8_MAX : static_cast<uint8_t>(std::distance(std::begin(common_subtypes), subtype_it));
470 
471  /* Note: We have to store the untranslated cargotype in the cache as the cache can be read by different NewGRFs,
472  * which will need different translations */
473  v->grf_cache.consist_cargo_information = cargo_classes | (common_cargo_type << 8) | (common_subtype << 16) | (user_def_data << 24);
475  }
476 
477  /* The cargo translation is specific to the accessing GRF, and thus cannot be cached. */
478  CargoID common_cargo_type = (v->grf_cache.consist_cargo_information >> 8) & 0xFF;
479 
480  /* Note:
481  * - Unlike everywhere else the cargo translation table is only used since grf version 8, not 7.
482  * - For translating the cargo type we need to use the GRF which is resolving the variable, which
483  * is object->ro.grffile.
484  * In case of CBID_TRAIN_ALLOW_WAGON_ATTACH this is not the same as v->GetGRF().
485  * - The grffile == nullptr case only happens if this function is called for default vehicles.
486  * And this is only done by CheckCaches().
487  */
488  const GRFFile *grffile = object->ro.grffile;
489  uint8_t common_bitnum = (common_cargo_type == INVALID_CARGO) ? 0xFF :
490  (grffile == nullptr || grffile->grf_version < 8) ? CargoSpec::Get(common_cargo_type)->bitnum : grffile->cargo_map[common_cargo_type];
491 
492  return (v->grf_cache.consist_cargo_information & 0xFFFF00FF) | common_bitnum << 8;
493  }
494 
495  case 0x43: // Company information
499  }
500  return v->grf_cache.company_information;
501 
502  case 0x44: // Aircraft information
503  if (v->type != VEH_AIRCRAFT || !Aircraft::From(v)->IsNormalAircraft()) return UINT_MAX;
504 
505  {
506  const Vehicle *w = v->Next();
507  assert(w != nullptr);
508  uint16_t altitude = ClampTo<uint16_t>(v->z_pos - w->z_pos); // Aircraft height - shadow height
509  uint8_t airporttype = ATP_TTDP_LARGE;
510 
512 
513  if (st != nullptr && st->airport.tile != INVALID_TILE) {
514  airporttype = st->airport.GetSpec()->ttd_airport_type;
515  }
516 
517  return (ClampTo<uint8_t>(altitude) << 8) | airporttype;
518  }
519 
520  case 0x45: { // Curvature info
521  /* Format: xxxTxBxF
522  * F - previous wagon to current wagon, 0 if vehicle is first
523  * B - current wagon to next wagon, 0 if wagon is last
524  * T - previous wagon to next wagon, 0 in an S-bend
525  */
526  if (!v->IsGroundVehicle()) return 0;
527 
528  const Vehicle *u_p = v->Previous();
529  const Vehicle *u_n = v->Next();
530  DirDiff f = (u_p == nullptr) ? DIRDIFF_SAME : DirDifference(u_p->direction, v->direction);
531  DirDiff b = (u_n == nullptr) ? DIRDIFF_SAME : DirDifference(v->direction, u_n->direction);
532  DirDiff t = ChangeDirDiff(f, b);
533 
534  return ((t > DIRDIFF_REVERSE ? t | 8 : t) << 16) |
535  ((b > DIRDIFF_REVERSE ? b | 8 : b) << 8) |
536  ( f > DIRDIFF_REVERSE ? f | 8 : f);
537  }
538 
539  case 0x46: // Motion counter
540  return v->motion_counter;
541 
542  case 0x47: { // Vehicle cargo info
543  /* Format: ccccwwtt
544  * tt - the cargo type transported by the vehicle,
545  * translated if a translation table has been installed.
546  * ww - cargo unit weight in 1/16 tons, same as cargo prop. 0F.
547  * cccc - the cargo class value of the cargo transported by the vehicle.
548  */
549  const CargoSpec *cs = CargoSpec::Get(v->cargo_type);
550 
551  /* Note:
552  * For translating the cargo type we need to use the GRF which is resolving the variable, which
553  * is object->ro.grffile.
554  * In case of CBID_TRAIN_ALLOW_WAGON_ATTACH this is not the same as v->GetGRF().
555  */
556  return (cs->classes << 16) | (cs->weight << 8) | object->ro.grffile->cargo_map[v->cargo_type];
557  }
558 
559  case 0x48: return v->GetEngine()->flags; // Vehicle Type Info
560  case 0x49: return v->build_year.base();
561 
562  case 0x4A:
563  switch (v->type) {
564  case VEH_TRAIN: {
565  RailType rt = GetTileRailType(v->tile);
566  const RailTypeInfo *rti = GetRailTypeInfo(rt);
567  return ((rti->flags & RTFB_CATENARY) ? 0x200 : 0) |
568  (HasPowerOnRail(Train::From(v)->railtype, rt) ? 0x100 : 0) |
570  }
571 
572  case VEH_ROAD: {
573  RoadType rt = GetRoadType(v->tile, GetRoadTramType(RoadVehicle::From(v)->roadtype));
574  const RoadTypeInfo *rti = GetRoadTypeInfo(rt);
575  return ((rti->flags & ROTFB_CATENARY) ? 0x200 : 0) |
576  0x100 |
578  }
579 
580  default:
581  return 0;
582  }
583 
584  case 0x4B: // Long date of last service
585  return v->date_of_last_service_newgrf.base();
586 
587  case 0x4C: // Current maximum speed in NewGRF units
588  if (!v->IsPrimaryVehicle()) return 0;
589  return v->GetCurrentMaxSpeed();
590 
591  case 0x4D: // Position within articulated vehicle
593  uint8_t artic_before = 0;
594  for (const Vehicle *u = v; u->IsArticulatedPart(); u = u->Previous()) artic_before++;
595  uint8_t artic_after = 0;
596  for (const Vehicle *u = v; u->HasArticulatedPart(); u = u->Next()) artic_after++;
597  v->grf_cache.position_in_vehicle = artic_before | artic_after << 8;
599  }
600  return v->grf_cache.position_in_vehicle;
601 
602  /* Variables which use the parameter */
603  case 0x60: // Count consist's engine ID occurrence
604  if (v->type != VEH_TRAIN) return v->GetEngine()->grf_prop.local_id == parameter ? 1 : 0;
605 
606  {
607  uint count = 0;
608  for (; v != nullptr; v = v->Next()) {
609  if (v->GetEngine()->grf_prop.local_id == parameter) count++;
610  }
611  return count;
612  }
613 
614  case 0x61: // Get variable of n-th vehicle in chain [signed number relative to vehicle]
615  if (!v->IsGroundVehicle() || parameter == 0x61) {
616  /* Not available */
617  break;
618  }
619 
620  /* Only allow callbacks that don't change properties to avoid circular dependencies. */
624  Vehicle *u = v->Move((int32_t)GetRegister(0x10F));
625  if (u == nullptr) return 0; // available, but zero
626 
627  if (parameter == 0x5F) {
628  /* This seems to be the only variable that makes sense to access via var 61, but is not handled by VehicleGetVariable */
629  return (u->random_bits << 8) | u->waiting_triggers;
630  } else {
631  return VehicleGetVariable(u, object, parameter, GetRegister(0x10E), available);
632  }
633  }
634  /* Not available */
635  break;
636 
637  case 0x62: { // Curvature/position difference for n-th vehicle in chain [signed number relative to vehicle]
638  /* Format: zzyyxxFD
639  * zz - Signed difference of z position between the selected and this vehicle.
640  * yy - Signed difference of y position between the selected and this vehicle.
641  * xx - Signed difference of x position between the selected and this vehicle.
642  * F - Flags, bit 7 corresponds to VS_HIDDEN.
643  * D - Dir difference, like in 0x45.
644  */
645  if (!v->IsGroundVehicle()) return 0;
646 
647  const Vehicle *u = v->Move((int8_t)parameter);
648  if (u == nullptr) return 0;
649 
650  /* Get direction difference. */
651  bool prev = (int8_t)parameter < 0;
652  uint32_t ret = prev ? DirDifference(u->direction, v->direction) : DirDifference(v->direction, u->direction);
653  if (ret > DIRDIFF_REVERSE) ret |= 0x08;
654 
655  if (u->vehstatus & VS_HIDDEN) ret |= 0x80;
656 
657  /* Get position difference. */
658  ret |= ((prev ? u->x_pos - v->x_pos : v->x_pos - u->x_pos) & 0xFF) << 8;
659  ret |= ((prev ? u->y_pos - v->y_pos : v->y_pos - u->y_pos) & 0xFF) << 16;
660  ret |= ((prev ? u->z_pos - v->z_pos : v->z_pos - u->z_pos) & 0xFF) << 24;
661 
662  return ret;
663  }
664 
665  case 0x63:
666  /* Tile compatibility wrt. arbitrary track-type
667  * Format:
668  * bit 0: Type 'parameter' is known.
669  * bit 1: Engines with type 'parameter' are compatible with this tile.
670  * bit 2: Engines with type 'parameter' are powered on this tile.
671  * bit 3: This tile has type 'parameter' or it is considered equivalent (alternate labels).
672  */
673  switch (v->type) {
674  case VEH_TRAIN: {
675  RailType param_type = GetRailTypeTranslation(parameter, object->ro.grffile);
676  if (param_type == INVALID_RAILTYPE) return 0x00;
677  RailType tile_type = GetTileRailType(v->tile);
678  if (tile_type == param_type) return 0x0F;
679  return (HasPowerOnRail(param_type, tile_type) ? 0x04 : 0x00) |
680  (IsCompatibleRail(param_type, tile_type) ? 0x02 : 0x00) |
681  0x01;
682  }
683  case VEH_ROAD: {
684  RoadTramType rtt = GetRoadTramType(RoadVehicle::From(v)->roadtype);
685  RoadType param_type = GetRoadTypeTranslation(rtt, parameter, object->ro.grffile);
686  if (param_type == INVALID_ROADTYPE) return 0x00;
687  RoadType tile_type = GetRoadType(v->tile, rtt);
688  if (tile_type == param_type) return 0x0F;
689  return (HasPowerOnRoad(param_type, tile_type) ? 0x06 : 0x00) |
690  0x01;
691  }
692  default: return 0x00;
693  }
694 
695  case 0xFE:
696  case 0xFF: {
697  uint16_t modflags = 0;
698 
699  if (v->type == VEH_TRAIN) {
700  const Train *t = Train::From(v);
701  bool is_powered_wagon = HasBit(t->flags, VRF_POWEREDWAGON);
702  const Train *u = is_powered_wagon ? t->First() : t; // for powered wagons the engine defines the type of engine (i.e. railtype)
703  RailType railtype = GetRailType(v->tile);
704  bool powered = t->IsEngine() || is_powered_wagon;
705  bool has_power = HasPowerOnRail(u->railtype, railtype);
706 
707  if (powered && has_power) SetBit(modflags, 5);
708  if (powered && !has_power) SetBit(modflags, 6);
709  if (HasBit(t->flags, VRF_TOGGLE_REVERSE)) SetBit(modflags, 8);
710  }
711  if (HasBit(v->vehicle_flags, VF_CARGO_UNLOADING)) SetBit(modflags, 1);
712  if (HasBit(v->vehicle_flags, VF_BUILT_AS_PROTOTYPE)) SetBit(modflags, 10);
713 
714  return variable == 0xFE ? modflags : GB(modflags, 8, 8);
715  }
716  }
717 
718  /*
719  * General vehicle properties
720  *
721  * Some parts of the TTD Vehicle structure are omitted for various reasons
722  * (see http://marcin.ttdpatch.net/sv1codec/TTD-locations.html#_VehicleArray)
723  */
724  switch (variable - 0x80) {
725  case 0x00: return v->type + 0x10;
726  case 0x01: return MapOldSubType(v);
727  case 0x02: break; // not implemented
728  case 0x03: break; // not implemented
729  case 0x04: return v->index;
730  case 0x05: return GB(v->index, 8, 8);
731  case 0x06: break; // not implemented
732  case 0x07: break; // not implemented
733  case 0x08: break; // not implemented
734  case 0x09: break; // not implemented
735  case 0x0A: return v->current_order.MapOldOrder();
736  case 0x0B: return v->current_order.GetDestination();
737  case 0x0C: return v->GetNumOrders();
738  case 0x0D: return v->cur_real_order_index;
739  case 0x0E: break; // not implemented
740  case 0x0F: break; // not implemented
741  case 0x10:
742  case 0x11: {
743  uint ticks;
744  if (v->current_order.IsType(OT_LOADING)) {
745  ticks = v->load_unload_ticks;
746  } else {
747  switch (v->type) {
748  case VEH_TRAIN: ticks = Train::From(v)->wait_counter; break;
749  case VEH_AIRCRAFT: ticks = Aircraft::From(v)->turn_counter; break;
750  default: ticks = 0; break;
751  }
752  }
753  return (variable - 0x80) == 0x10 ? ticks : GB(ticks, 8, 8);
754  }
755  case 0x12: return ClampTo<uint16_t>(v->date_of_last_service_newgrf - CalendarTime::DAYS_TILL_ORIGINAL_BASE_YEAR);
756  case 0x13: return GB(ClampTo<uint16_t>(v->date_of_last_service_newgrf - CalendarTime::DAYS_TILL_ORIGINAL_BASE_YEAR), 8, 8);
757  case 0x14: return v->GetServiceInterval();
758  case 0x15: return GB(v->GetServiceInterval(), 8, 8);
759  case 0x16: return v->last_station_visited;
760  case 0x17: return v->tick_counter;
761  case 0x18:
762  case 0x19: {
763  uint max_speed;
764  switch (v->type) {
765  case VEH_AIRCRAFT:
766  max_speed = Aircraft::From(v)->GetSpeedOldUnits(); // Convert to old units.
767  break;
768 
769  default:
770  max_speed = v->vcache.cached_max_speed;
771  break;
772  }
773  return (variable - 0x80) == 0x18 ? max_speed : GB(max_speed, 8, 8);
774  }
775  case 0x1A: return v->x_pos;
776  case 0x1B: return GB(v->x_pos, 8, 8);
777  case 0x1C: return v->y_pos;
778  case 0x1D: return GB(v->y_pos, 8, 8);
779  case 0x1E: return v->z_pos;
780  case 0x1F: return object->rotor_in_gui ? DIR_W : v->direction; // for rotors the spriteset contains animation frames, so NewGRF need a different way to tell the helicopter orientation.
781  case 0x20: break; // not implemented
782  case 0x21: break; // not implemented
783  case 0x22: break; // not implemented
784  case 0x23: break; // not implemented
785  case 0x24: break; // not implemented
786  case 0x25: break; // not implemented
787  case 0x26: break; // not implemented
788  case 0x27: break; // not implemented
789  case 0x28: return 0; // cur_image is a potential desyncer due to Action1 in static NewGRFs.
790  case 0x29: return 0; // cur_image is a potential desyncer due to Action1 in static NewGRFs.
791  case 0x2A: break; // not implemented
792  case 0x2B: break; // not implemented
793  case 0x2C: break; // not implemented
794  case 0x2D: break; // not implemented
795  case 0x2E: break; // not implemented
796  case 0x2F: break; // not implemented
797  case 0x30: break; // not implemented
798  case 0x31: break; // not implemented
799  case 0x32: return v->vehstatus;
800  case 0x33: return 0; // non-existent high byte of vehstatus
801  case 0x34: return v->type == VEH_AIRCRAFT ? (v->cur_speed * 10) / 128 : v->cur_speed;
802  case 0x35: return GB(v->type == VEH_AIRCRAFT ? (v->cur_speed * 10) / 128 : v->cur_speed, 8, 8);
803  case 0x36: return v->subspeed;
804  case 0x37: return v->acceleration;
805  case 0x38: break; // not implemented
806  case 0x39: return v->cargo_type;
807  case 0x3A: return v->cargo_cap;
808  case 0x3B: return GB(v->cargo_cap, 8, 8);
809  case 0x3C: return ClampTo<uint16_t>(v->cargo.StoredCount());
810  case 0x3D: return GB(ClampTo<uint16_t>(v->cargo.StoredCount()), 8, 8);
811  case 0x3E: return v->cargo.GetFirstStation();
812  case 0x3F: return ClampTo<uint8_t>(v->cargo.PeriodsInTransit());
813  case 0x40: return ClampTo<uint16_t>(v->age);
814  case 0x41: return GB(ClampTo<uint16_t>(v->age), 8, 8);
815  case 0x42: return ClampTo<uint16_t>(v->max_age);
816  case 0x43: return GB(ClampTo<uint16_t>(v->max_age), 8, 8);
818  case 0x45: return v->unitnumber;
819  case 0x46: return v->GetEngine()->grf_prop.local_id;
820  case 0x47: return GB(v->GetEngine()->grf_prop.local_id, 8, 8);
821  case 0x48:
822  if (v->type != VEH_TRAIN || v->spritenum != 0xFD) return v->spritenum;
823  return HasBit(Train::From(v)->flags, VRF_REVERSE_DIRECTION) ? 0xFE : 0xFD;
824 
825  case 0x49: return v->day_counter;
826  case 0x4A: return v->breakdowns_since_last_service;
827  case 0x4B: return v->breakdown_ctr;
828  case 0x4C: return v->breakdown_delay;
829  case 0x4D: return v->breakdown_chance;
830  case 0x4E: return v->reliability;
831  case 0x4F: return GB(v->reliability, 8, 8);
832  case 0x50: return v->reliability_spd_dec;
833  case 0x51: return GB(v->reliability_spd_dec, 8, 8);
834  case 0x52: return ClampTo<int32_t>(v->GetDisplayProfitThisYear());
835  case 0x53: return GB(ClampTo<int32_t>(v->GetDisplayProfitThisYear()), 8, 24);
836  case 0x54: return GB(ClampTo<int32_t>(v->GetDisplayProfitThisYear()), 16, 16);
837  case 0x55: return GB(ClampTo<int32_t>(v->GetDisplayProfitThisYear()), 24, 8);
838  case 0x56: return ClampTo<int32_t>(v->GetDisplayProfitLastYear());
839  case 0x57: return GB(ClampTo<int32_t>(v->GetDisplayProfitLastYear()), 8, 24);
840  case 0x58: return GB(ClampTo<int32_t>(v->GetDisplayProfitLastYear()), 16, 16);
841  case 0x59: return GB(ClampTo<int32_t>(v->GetDisplayProfitLastYear()), 24, 8);
842  case 0x5A: return v->Next() == nullptr ? INVALID_VEHICLE : v->Next()->index;
843  case 0x5B: break; // not implemented
844  case 0x5C: return ClampTo<int32_t>(v->value);
845  case 0x5D: return GB(ClampTo<int32_t>(v->value), 8, 24);
846  case 0x5E: return GB(ClampTo<int32_t>(v->value), 16, 16);
847  case 0x5F: return GB(ClampTo<int32_t>(v->value), 24, 8);
848  case 0x60: break; // not implemented
849  case 0x61: break; // not implemented
850  case 0x62: break; // vehicle specific, see below
851  case 0x63: break; // not implemented
852  case 0x64: break; // vehicle specific, see below
853  case 0x65: break; // vehicle specific, see below
854  case 0x66: break; // vehicle specific, see below
855  case 0x67: break; // vehicle specific, see below
856  case 0x68: break; // vehicle specific, see below
857  case 0x69: break; // vehicle specific, see below
858  case 0x6A: break; // not implemented
859  case 0x6B: break; // not implemented
860  case 0x6C: break; // not implemented
861  case 0x6D: break; // not implemented
862  case 0x6E: break; // not implemented
863  case 0x6F: break; // not implemented
864  case 0x70: break; // not implemented
865  case 0x71: break; // not implemented
866  case 0x72: return v->cargo_subtype;
867  case 0x73: break; // vehicle specific, see below
868  case 0x74: break; // vehicle specific, see below
869  case 0x75: break; // vehicle specific, see below
870  case 0x76: break; // vehicle specific, see below
871  case 0x77: break; // vehicle specific, see below
872  case 0x78: break; // not implemented
873  case 0x79: break; // not implemented
874  case 0x7A: return v->random_bits;
875  case 0x7B: return v->waiting_triggers;
876  case 0x7C: break; // vehicle specific, see below
877  case 0x7D: break; // vehicle specific, see below
878  case 0x7E: break; // not implemented
879  case 0x7F: break; // vehicle specific, see below
880  }
881 
882  /* Vehicle specific properties */
883  switch (v->type) {
884  case VEH_TRAIN: {
885  Train *t = Train::From(v);
886  switch (variable - 0x80) {
887  case 0x62: return t->track;
888  case 0x66: return t->railtype;
889  case 0x73: return 0x80 + VEHICLE_LENGTH - t->gcache.cached_veh_length;
890  case 0x74: return t->gcache.cached_power;
891  case 0x75: return GB(t->gcache.cached_power, 8, 24);
892  case 0x76: return GB(t->gcache.cached_power, 16, 16);
893  case 0x77: return GB(t->gcache.cached_power, 24, 8);
894  case 0x7C: return t->First()->index;
895  case 0x7D: return GB(t->First()->index, 8, 8);
896  case 0x7F: return 0; // Used for vehicle reversing hack in TTDP
897  }
898  break;
899  }
900 
901  case VEH_ROAD: {
903  switch (variable - 0x80) {
904  case 0x62: return rv->state;
905  case 0x64: return rv->blocked_ctr;
906  case 0x65: return GB(rv->blocked_ctr, 8, 8);
907  case 0x66: return rv->overtaking;
908  case 0x67: return rv->overtaking_ctr;
909  case 0x68: return rv->crashed_ctr;
910  case 0x69: return GB(rv->crashed_ctr, 8, 8);
911  }
912  break;
913  }
914 
915  case VEH_SHIP: {
916  Ship *s = Ship::From(v);
917  switch (variable - 0x80) {
918  case 0x62: return s->state;
919  }
920  break;
921  }
922 
923  case VEH_AIRCRAFT: {
924  Aircraft *a = Aircraft::From(v);
925  switch (variable - 0x80) {
926  case 0x62: return MapAircraftMovementState(a); // Current movement state
927  case 0x63: return a->targetairport; // Airport to which the action refers
928  case 0x66: return MapAircraftMovementAction(a); // Current movement action
929  }
930  break;
931  }
932 
933  default: break;
934  }
935 
936  Debug(grf, 1, "Unhandled vehicle variable 0x{:X}, type 0x{:X}", variable, (uint)v->type);
937 
938  available = false;
939  return UINT_MAX;
940 }
941 
942 /* virtual */ uint32_t VehicleScopeResolver::GetVariable(uint8_t variable, [[maybe_unused]] uint32_t parameter, bool &available) const
943 {
944  if (this->v == nullptr) {
945  /* Vehicle does not exist, so we're in a purchase list */
946  switch (variable) {
947  case 0x43: return GetCompanyInfo(_current_company, LiveryHelper(this->self_type, nullptr)); // Owner information
948  case 0x46: return 0; // Motion counter
949  case 0x47: { // Vehicle cargo info
950  const Engine *e = Engine::Get(this->self_type);
951  CargoID cargo_type = e->GetDefaultCargoType();
952  if (IsValidCargoID(cargo_type)) {
953  const CargoSpec *cs = CargoSpec::Get(cargo_type);
954  return (cs->classes << 16) | (cs->weight << 8) | this->ro.grffile->cargo_map[cargo_type];
955  } else {
956  return 0x000000FF;
957  }
958  }
959  case 0x48: return Engine::Get(this->self_type)->flags; // Vehicle Type Info
960  case 0x49: return TimerGameCalendar::year.base(); // 'Long' format build year
961  case 0x4B: return TimerGameCalendar::date.base(); // Long date of last service
962  case 0x92: return ClampTo<uint16_t>(TimerGameCalendar::date - CalendarTime::DAYS_TILL_ORIGINAL_BASE_YEAR); // Date of last service
963  case 0x93: return GB(ClampTo<uint16_t>(TimerGameCalendar::date - CalendarTime::DAYS_TILL_ORIGINAL_BASE_YEAR), 8, 8);
965  case 0xC6: return Engine::Get(this->self_type)->grf_prop.local_id;
966  case 0xC7: return GB(Engine::Get(this->self_type)->grf_prop.local_id, 8, 8);
967  case 0xDA: return INVALID_VEHICLE; // Next vehicle
968  case 0xF2: return 0; // Cargo subtype
969  }
970 
971  available = false;
972  return UINT_MAX;
973  }
974 
975  return VehicleGetVariable(const_cast<Vehicle*>(this->v), this, variable, parameter, available);
976 }
977 
978 
979 /* virtual */ const SpriteGroup *VehicleResolverObject::ResolveReal(const RealSpriteGroup *group) const
980 {
981  const Vehicle *v = this->self_scope.v;
982 
983  if (v == nullptr) {
984  if (!group->loading.empty()) return group->loading[0];
985  if (!group->loaded.empty()) return group->loaded[0];
986  return nullptr;
987  }
988 
989  bool in_motion = !v->First()->current_order.IsType(OT_LOADING);
990 
991  uint totalsets = in_motion ? (uint)group->loaded.size() : (uint)group->loading.size();
992 
993  if (totalsets == 0) return nullptr;
994 
995  uint set = (v->cargo.StoredCount() * totalsets) / std::max<uint16_t>(1u, v->cargo_cap);
996  set = std::min(set, totalsets - 1);
997 
998  return in_motion ? group->loaded[set] : group->loading[set];
999 }
1000 
1002 {
1003  switch (Engine::Get(this->self_scope.self_type)->type) {
1004  case VEH_TRAIN: return GSF_TRAINS;
1005  case VEH_ROAD: return GSF_ROADVEHICLES;
1006  case VEH_SHIP: return GSF_SHIPS;
1007  case VEH_AIRCRAFT: return GSF_AIRCRAFT;
1008  default: return GSF_INVALID;
1009  }
1010 }
1011 
1013 {
1014  return Engine::Get(this->self_scope.self_type)->grf_prop.local_id;
1015 }
1016 
1022 static const GRFFile *GetEngineGrfFile(EngineID engine_type)
1023 {
1024  const Engine *e = Engine::Get(engine_type);
1025  return (e != nullptr) ? e->GetGRF() : nullptr;
1026 }
1027 
1038 VehicleResolverObject::VehicleResolverObject(EngineID engine_type, const Vehicle *v, WagonOverride wagon_override, bool rotor_in_gui,
1039  CallbackID callback, uint32_t callback_param1, uint32_t callback_param2)
1040  : ResolverObject(GetEngineGrfFile(engine_type), callback, callback_param1, callback_param2),
1041  self_scope(*this, engine_type, v, rotor_in_gui),
1042  parent_scope(*this, engine_type, ((v != nullptr) ? v->First() : v), rotor_in_gui),
1043  relative_scope(*this, engine_type, v, rotor_in_gui),
1044  cached_relative_count(0)
1045 {
1046  if (wagon_override == WO_SELF) {
1047  this->root_spritegroup = GetWagonOverrideSpriteSet(engine_type, SpriteGroupCargo::SG_DEFAULT, engine_type);
1048  } else {
1049  if (wagon_override != WO_NONE && v != nullptr && v->IsGroundVehicle()) {
1050  assert(v->engine_type == engine_type); // overrides make little sense with fake scopes
1051 
1052  /* For trains we always use cached value, except for callbacks because the override spriteset
1053  * to use may be different than the one cached. It happens for callback 0x15 (refit engine),
1054  * as v->cargo_type is temporary changed to the new type */
1055  if (wagon_override == WO_CACHED && v->type == VEH_TRAIN) {
1056  this->root_spritegroup = Train::From(v)->tcache.cached_override;
1057  } else {
1058  this->root_spritegroup = GetWagonOverrideSpriteSet(v->engine_type, v->cargo_type, v->GetGroundVehicleCache()->first_engine);
1059  }
1060  }
1061 
1062  if (this->root_spritegroup == nullptr) {
1063  const Engine *e = Engine::Get(engine_type);
1064  CargoID cargo = v != nullptr ? v->cargo_type : SpriteGroupCargo::SG_PURCHASE;
1065  assert(cargo < std::size(e->grf_prop.spritegroup));
1067  }
1068  }
1069 }
1070 
1071 
1072 
1073 void GetCustomEngineSprite(EngineID engine, const Vehicle *v, Direction direction, EngineImageType image_type, VehicleSpriteSeq *result)
1074 {
1076  result->Clear();
1077 
1078  bool sprite_stack = HasBit(EngInfo(engine)->misc_flags, EF_SPRITE_STACK);
1079  uint max_stack = sprite_stack ? lengthof(result->seq) : 1;
1080  for (uint stack = 0; stack < max_stack; ++stack) {
1081  object.ResetState();
1082  object.callback_param1 = image_type | (stack << 8);
1083  const SpriteGroup *group = object.Resolve();
1084  uint32_t reg100 = sprite_stack ? GetRegister(0x100) : 0;
1085  if (group != nullptr && group->GetNumResults() != 0) {
1086  result->seq[result->count].sprite = group->GetResult() + (direction % group->GetNumResults());
1087  result->seq[result->count].pal = GB(reg100, 0, 16); // zero means default recolouring
1088  result->count++;
1089  }
1090  if (!HasBit(reg100, 31)) break;
1091  }
1092 }
1093 
1094 
1095 void GetRotorOverrideSprite(EngineID engine, const struct Aircraft *v, EngineImageType image_type, VehicleSpriteSeq *result)
1096 {
1097  const Engine *e = Engine::Get(engine);
1098 
1099  /* Only valid for helicopters */
1100  assert(e->type == VEH_AIRCRAFT);
1101  assert(!(e->u.air.subtype & AIR_CTOL));
1102 
1103  /* We differ from TTDPatch by resolving the sprite using the primary vehicle 'v', and not using the rotor vehicle 'v->Next()->Next()'.
1104  * TTDPatch copies some variables between the vehicles each time, to somehow synchronize the rotor vehicle with the primary vehicle.
1105  * We use 'rotor_in_gui' to replicate when the variables differ.
1106  * But some other variables like 'rotor state' and 'rotor speed' are not available in OpenTTD, while they are in TTDPatch. */
1107  bool rotor_in_gui = image_type != EIT_ON_MAP;
1108  VehicleResolverObject object(engine, v, VehicleResolverObject::WO_SELF, rotor_in_gui, CBID_NO_CALLBACK);
1109  result->Clear();
1110  uint rotor_pos = v == nullptr || rotor_in_gui ? 0 : v->Next()->Next()->state;
1111 
1112  bool sprite_stack = HasBit(e->info.misc_flags, EF_SPRITE_STACK);
1113  uint max_stack = sprite_stack ? lengthof(result->seq) : 1;
1114  for (uint stack = 0; stack < max_stack; ++stack) {
1115  object.ResetState();
1116  object.callback_param1 = image_type | (stack << 8);
1117  const SpriteGroup *group = object.Resolve();
1118  uint32_t reg100 = sprite_stack ? GetRegister(0x100) : 0;
1119  if (group != nullptr && group->GetNumResults() != 0) {
1120  result->seq[result->count].sprite = group->GetResult() + (rotor_pos % group->GetNumResults());
1121  result->seq[result->count].pal = GB(reg100, 0, 16); // zero means default recolouring
1122  result->count++;
1123  }
1124  if (!HasBit(reg100, 31)) break;
1125  }
1126 }
1127 
1128 
1135 {
1136  assert(v->type == VEH_TRAIN);
1137  return Train::From(v)->tcache.cached_override != nullptr;
1138 }
1139 
1149 uint16_t GetVehicleCallback(CallbackID callback, uint32_t param1, uint32_t param2, EngineID engine, const Vehicle *v)
1150 {
1151  VehicleResolverObject object(engine, v, VehicleResolverObject::WO_UNCACHED, false, callback, param1, param2);
1152  return object.ResolveCallback();
1153 }
1154 
1165 uint16_t GetVehicleCallbackParent(CallbackID callback, uint32_t param1, uint32_t param2, EngineID engine, const Vehicle *v, const Vehicle *parent)
1166 {
1167  VehicleResolverObject object(engine, v, VehicleResolverObject::WO_NONE, false, callback, param1, param2);
1168  object.parent_scope.SetVehicle(parent);
1169  return object.ResolveCallback();
1170 }
1171 
1172 
1173 /* Callback 36 handlers */
1174 int GetVehicleProperty(const Vehicle *v, PropertyID property, int orig_value, bool is_signed)
1175 {
1176  return GetEngineProperty(v->engine_type, property, orig_value, v, is_signed);
1177 }
1178 
1179 
1180 int GetEngineProperty(EngineID engine, PropertyID property, int orig_value, const Vehicle *v, bool is_signed)
1181 {
1182  uint16_t callback = GetVehicleCallback(CBID_VEHICLE_MODIFY_PROPERTY, property, 0, engine, v);
1183  if (callback != CALLBACK_FAILED) {
1184  if (is_signed) {
1185  /* Sign extend 15 bit integer */
1186  return static_cast<int16_t>(callback << 1) / 2;
1187  } else {
1188  return callback;
1189  }
1190  }
1191 
1192  return orig_value;
1193 }
1194 
1201 bool TestVehicleBuildProbability(Vehicle *v, EngineID engine, BuildProbabilityType type)
1202 {
1203  uint16_t p = GetVehicleCallback(CBID_VEHICLE_BUILD_PROBABILITY, to_underlying(type), 0, engine, v);
1204  if (p == CALLBACK_FAILED) return false;
1205 
1206  const uint16_t PROBABILITY_RANGE = 100;
1207  return p + RandomRange(PROBABILITY_RANGE) >= PROBABILITY_RANGE;
1208 }
1209 
1210 static void DoTriggerVehicle(Vehicle *v, VehicleTrigger trigger, uint16_t base_random_bits, bool first)
1211 {
1212  /* We can't trigger a non-existent vehicle... */
1213  assert(v != nullptr);
1214 
1216  object.waiting_triggers = v->waiting_triggers | trigger;
1217  v->waiting_triggers = object.waiting_triggers; // store now for var 5F
1218 
1219  const SpriteGroup *group = object.Resolve();
1220  if (group == nullptr) return;
1221 
1222  /* Store remaining triggers. */
1223  v->waiting_triggers = object.GetRemainingTriggers();
1224 
1225  /* Rerandomise bits. Scopes other than SELF are invalid for rerandomisation. For bug-to-bug-compatibility with TTDP we ignore the scope. */
1226  uint16_t new_random_bits = Random();
1227  uint32_t reseed = object.GetReseedSum();
1228  v->random_bits &= ~reseed;
1229  v->random_bits |= (first ? new_random_bits : base_random_bits) & reseed;
1230 
1231  switch (trigger) {
1232  case VEHICLE_TRIGGER_NEW_CARGO:
1233  /* All vehicles in chain get ANY_NEW_CARGO trigger now.
1234  * So we call it for the first one and they will recurse.
1235  * Indexing part of vehicle random bits needs to be
1236  * same for all triggered vehicles in the chain (to get
1237  * all the random-cargo wagons carry the same cargo,
1238  * i.e.), so we give them all the NEW_CARGO triggered
1239  * vehicle's portion of random bits. */
1240  assert(first);
1241  DoTriggerVehicle(v->First(), VEHICLE_TRIGGER_ANY_NEW_CARGO, new_random_bits, false);
1242  break;
1243 
1244  case VEHICLE_TRIGGER_DEPOT:
1245  /* We now trigger the next vehicle in chain recursively.
1246  * The random bits portions may be different for each
1247  * vehicle in chain. */
1248  if (v->Next() != nullptr) DoTriggerVehicle(v->Next(), trigger, 0, true);
1249  break;
1250 
1251  case VEHICLE_TRIGGER_EMPTY:
1252  /* We now trigger the next vehicle in chain
1253  * recursively. The random bits portions must be same
1254  * for each vehicle in chain, so we give them all
1255  * first chained vehicle's portion of random bits. */
1256  if (v->Next() != nullptr) DoTriggerVehicle(v->Next(), trigger, first ? new_random_bits : base_random_bits, false);
1257  break;
1258 
1259  case VEHICLE_TRIGGER_ANY_NEW_CARGO:
1260  /* Now pass the trigger recursively to the next vehicle
1261  * in chain. */
1262  assert(!first);
1263  if (v->Next() != nullptr) DoTriggerVehicle(v->Next(), VEHICLE_TRIGGER_ANY_NEW_CARGO, base_random_bits, false);
1264  break;
1265 
1266  case VEHICLE_TRIGGER_CALLBACK_32:
1267  /* Do not do any recursion */
1268  break;
1269  }
1270 }
1271 
1272 void TriggerVehicle(Vehicle *v, VehicleTrigger trigger)
1273 {
1274  if (trigger == VEHICLE_TRIGGER_DEPOT) {
1275  /* store that the vehicle entered a depot this tick */
1277  }
1278 
1280  DoTriggerVehicle(v, trigger, 0, true);
1282 }
1283 
1284 /* Functions for changing the order of vehicle purchase lists */
1285 
1287  EngineID engine;
1288  uint target;
1289 };
1290 
1291 static std::vector<ListOrderChange> _list_order_changes;
1292 
1299 void AlterVehicleListOrder(EngineID engine, uint target)
1300 {
1301  /* Add the list order change to a queue */
1302  _list_order_changes.push_back({engine, target});
1303 }
1304 
1311 static bool EnginePreSort(const EngineID &a, const EngineID &b)
1312 {
1313  const EngineIDMapping &id_a = _engine_mngr.at(a);
1314  const EngineIDMapping &id_b = _engine_mngr.at(b);
1315 
1316  /* 1. Sort by engine type */
1317  if (id_a.type != id_b.type) return (int)id_a.type < (int)id_b.type;
1318 
1319  /* 2. Sort by scope-GRFID */
1320  if (id_a.grfid != id_b.grfid) return id_a.grfid < id_b.grfid;
1321 
1322  /* 3. Sort by local ID */
1323  return (int)id_a.internal_id < (int)id_b.internal_id;
1324 }
1325 
1330 {
1331  /* Pre-sort engines by scope-grfid and local index */
1332  std::vector<EngineID> ordering;
1333  for (const Engine *e : Engine::Iterate()) {
1334  ordering.push_back(e->index);
1335  }
1336  std::sort(ordering.begin(), ordering.end(), EnginePreSort);
1337 
1338  /* Apply Insertion-Sort operations */
1339  for (const ListOrderChange &it : _list_order_changes) {
1340  EngineID source = it.engine;
1341  uint local_target = it.target;
1342 
1343  const EngineIDMapping *id_source = _engine_mngr.data() + source;
1344  if (id_source->internal_id == local_target) continue;
1345 
1346  EngineID target = _engine_mngr.GetID(id_source->type, local_target, id_source->grfid);
1347  if (target == INVALID_ENGINE) continue;
1348 
1349  int source_index = find_index(ordering, source);
1350  int target_index = find_index(ordering, target);
1351 
1352  assert(source_index >= 0 && target_index >= 0);
1353  assert(source_index != target_index);
1354 
1355  EngineID *list = ordering.data();
1356  if (source_index < target_index) {
1357  --target_index;
1358  for (int i = source_index; i < target_index; ++i) list[i] = list[i + 1];
1359  list[target_index] = source;
1360  } else {
1361  for (int i = source_index; i > target_index; --i) list[i] = list[i - 1];
1362  list[target_index] = source;
1363  }
1364  }
1365 
1366  /* Store final sort-order */
1367  uint index = 0;
1368  for (const EngineID &eid : ordering) {
1369  Engine::Get(eid)->list_position = index;
1370  ++index;
1371  }
1372 
1373  /* Clear out the queue */
1374  _list_order_changes.clear();
1375  _list_order_changes.shrink_to_fit();
1376 }
1377 
1383 {
1385 
1386  /* These variables we have to check; these are the ones with a cache. */
1387  static const int cache_entries[][2] = {
1388  { 0x40, NCVV_POSITION_CONSIST_LENGTH },
1389  { 0x41, NCVV_POSITION_SAME_ID_LENGTH },
1391  { 0x43, NCVV_COMPANY_INFORMATION },
1392  { 0x4D, NCVV_POSITION_IN_VEHICLE },
1393  };
1394  static_assert(NCVV_END == lengthof(cache_entries));
1395 
1396  /* Resolve all the variables, so their caches are set. */
1397  for (const auto &cache_entry : cache_entries) {
1398  /* Only resolve when the cache isn't valid. */
1399  if (HasBit(v->grf_cache.cache_valid, cache_entry[1])) continue;
1400  bool stub;
1401  ro.GetScope(VSG_SCOPE_SELF)->GetVariable(cache_entry[0], 0, stub);
1402  }
1403 
1404  /* Make sure really all bits are set. */
1405  assert(v->grf_cache.cache_valid == (1 << NCVV_END) - 1);
1406 }
Base for aircraft.
Station * GetTargetAirportIfValid(const Aircraft *v)
Returns aircraft's target station if v->target_airport is a valid station with airport.
@ AMED_BRAKE
Taxiing at the airport.
Definition: airport.h:53
@ AMED_HOLD
Holding pattern movement (above the airport).
Definition: airport.h:56
@ AMED_SLOWTURN
Turn slowly (mostly used in the air).
Definition: airport.h:50
@ AMED_HELI_LOWER
Helicopter landing.
Definition: airport.h:55
@ AMED_EXACTPOS
Go exactly to the destination coordinates.
Definition: airport.h:52
@ AMED_HELI_RAISE
Helicopter take-off.
Definition: airport.h:54
@ HELITAKEOFF
Helicopter wants to leave the airport.
Definition: airport.h:74
@ TERM4
Heading for terminal 4.
Definition: airport.h:66
@ STARTTAKEOFF
Airplane has arrived at a runway for take-off.
Definition: airport.h:72
@ HELIPAD2
Heading for helipad 2.
Definition: airport.h:70
@ ENDTAKEOFF
Airplane has reached end-point of the take-off runway.
Definition: airport.h:73
@ TERM5
Heading for terminal 5.
Definition: airport.h:67
@ TERM6
Heading for terminal 6.
Definition: airport.h:68
@ TERM3
Heading for terminal 3.
Definition: airport.h:65
@ TERM8
Heading for terminal 8.
Definition: airport.h:81
@ HELIPAD3
Heading for helipad 3.
Definition: airport.h:82
@ HELIPAD1
Heading for helipad 1.
Definition: airport.h:69
@ TERM2
Heading for terminal 2.
Definition: airport.h:64
@ HANGAR
Heading for hangar.
Definition: airport.h:62
@ FLYING
Vehicle is flying in the air.
Definition: airport.h:75
@ TAKEOFF
Airplane wants to leave the airport.
Definition: airport.h:71
@ HELILANDING
Helicopter wants to land.
Definition: airport.h:78
@ ENDLANDING
Airplane wants to finish landing.
Definition: airport.h:77
@ HELIENDLANDING
Helicopter wants to finish landing.
Definition: airport.h:79
@ TERM1
Heading for terminal 1.
Definition: airport.h:63
@ LANDING
Airplane wants to land.
Definition: airport.h:76
@ TERM7
Heading for terminal 7.
Definition: airport.h:80
constexpr debug_inline bool HasBit(const T x, const uint8_t y)
Checks if a bit in a value is set.
constexpr T SetBit(T &x, const uint8_t y)
Set a bit in a variable.
constexpr static debug_inline uint GB(const T x, const uint8_t s, const uint8_t n)
Fetch n bits from x, started at bit s.
uint8_t CargoID
Cargo slots to indicate a cargo type within a game.
Definition: cargo_type.h:22
bool IsValidCargoID(CargoID t)
Test whether cargo type is not INVALID_CARGO.
Definition: cargo_type.h:107
static const CargoID NUM_CARGO
Maximum number of cargo types in a game.
Definition: cargo_type.h:74
uint PeriodsInTransit() const
Returns average number of cargo aging periods in transit for a cargo entity.
Definition: cargopacket.h:338
This struct contains all the info that is needed to draw and construct tracks.
Definition: rail.h:127
RailTypeFlags flags
Bit mask of rail type flags.
Definition: rail.h:211
RoadTypeFlags flags
Bit mask of road type flags.
Definition: road.h:127
static Date date
Current date in days (day counter).
static Year year
Current year, starting at 0.
static constexpr TimerGame< struct Calendar >::Year ORIGINAL_MAX_YEAR
The maximum year of the original TTD.
static constexpr TimerGame< struct Calendar >::Year ORIGINAL_BASE_YEAR
The minimum starting year/base year of the original TTD.
static constexpr TimerGame< struct Calendar >::Date DAYS_TILL_ORIGINAL_BASE_YEAR
The date of the first day of the original base year.
StationID GetFirstStation() const
Returns the first station of the first cargo packet in this list.
Definition: cargopacket.h:405
uint StoredCount() const
Returns sum of cargo on board the vehicle (ie not only reserved).
Definition: cargopacket.h:434
Definition of stuff that is very close to a company, like the company struct itself.
CompanyID _current_company
Company currently doing an action.
Definition: company_cmd.cpp:53
Functions related to companies.
Some simple functions to help with accessing containers.
int find_index(Container const &container, typename Container::const_reference item)
Helper function to get the index of an item Consider using std::set, std::unordered_set or std::flat_...
Functions related to debugging.
#define Debug(category, level, format_string,...)
Ouptut a line of debugging information.
Definition: debug.h:37
DirDiff DirDifference(Direction d0, Direction d1)
Calculate the difference between two directions.
DirDiff ChangeDirDiff(DirDiff d, DirDiff delta)
Applies two differences together.
Direction
Defines the 8 directions on the map.
@ DIR_W
West.
DirDiff
Allow incrementing of Direction variables.
@ DIRDIFF_REVERSE
One direction is the opposite of the other one.
@ DIRDIFF_SAME
Both directions faces to the same direction.
static const EngineID INVALID_ENGINE
Constant denoting an invalid engine.
Definition: engine_type.h:206
uint16_t EngineID
Unique identification number of an engine.
Definition: engine_type.h:21
@ AIR_CTOL
Conventional Take Off and Landing, i.e. planes.
Definition: engine_type.h:95
@ EF_SPRITE_STACK
Draw vehicle by stacking multiple sprites.
Definition: engine_type.h:176
constexpr std::underlying_type_t< enum_type > to_underlying(enum_type e)
Implementation of std::to_underlying (from C++23)
Definition: enum_type.hpp:15
static const uint8_t LIT_ALL
Show the liveries of all companies.
Definition: livery.h:18
constexpr T Clamp(const T a, const T min, const T max)
Clamp a value between an interval.
Definition: math_func.hpp:79
static constexpr CargoID SG_DEFAULT
Default type used when no more-specific cargo matches.
Definition: newgrf_cargo.h:23
static constexpr CargoID SG_PURCHASE
Used in purchase lists before an item exists.
Definition: newgrf_cargo.h:24
GrfSpecFeature
Definition: newgrf.h:67
@ GSF_INVALID
An invalid spec feature.
Definition: newgrf.h:94
@ ATP_TTDP_LARGE
Same as AT_LARGE.
CallbackID
List of implemented NewGRF callbacks.
@ CBID_VEHICLE_BUILD_PROBABILITY
Called to determine probability during build.
@ CBID_VEHICLE_SPAWN_VISUAL_EFFECT
Called to spawn visual effects for vehicles.
@ CBID_VEHICLE_COLOUR_MAPPING
Called to determine if a specific colour map should be used for a vehicle instead of the default live...
@ CBID_VEHICLE_32DAY_CALLBACK
Called for every vehicle every 32 days (not all on same date though).
@ CBID_NO_CALLBACK
Set when using the callback resolve system, but not to resolve a callback.
@ CBID_VEHICLE_START_STOP_CHECK
Called when the company (or AI) tries to start or stop a vehicle.
@ CBID_RANDOM_TRIGGER
Set when calling a randomizing trigger (almost undocumented).
@ CBID_TRAIN_ALLOW_WAGON_ATTACH
Determine whether a wagon can be attached to an already existing train.
@ CBID_VEHICLE_MODIFY_PROPERTY
Called to modify various vehicle properties.
static const uint CALLBACK_FAILED
Different values for Callback result evaluations.
Cargo support for NewGRFs.
uint32_t GetCompanyInfo(CompanyID owner, const Livery *l)
Returns company information like in vehicle var 43 or station var 43.
void SetEngineGRF(EngineID engine, const GRFFile *file)
Tie a GRFFile entry to an engine, to allow us to retrieve GRF parameters etc during a game.
static uint32_t PositionHelper(const Vehicle *v, bool consecutive)
Helper to get the position of a vehicle within a chain of vehicles.
static bool EnginePreSort(const EngineID &a, const EngineID &b)
Comparator function to sort engines via scope-GRFID and local ID.
void FillNewGRFVehicleCache(const Vehicle *v)
Fill the grf_cache of the given vehicle.
void AlterVehicleListOrder(EngineID engine, uint target)
Record a vehicle ListOrderChange.
uint16_t GetVehicleCallbackParent(CallbackID callback, uint32_t param1, uint32_t param2, EngineID engine, const Vehicle *v, const Vehicle *parent)
Evaluate a newgrf callback for vehicles with a different vehicle for parent scope.
static const GRFFile * GetEngineGrfFile(EngineID engine_type)
Get the grf file associated with an engine type.
bool UsesWagonOverride(const Vehicle *v)
Check if a wagon is currently using a wagon override.
static const Livery * LiveryHelper(EngineID engine, const Vehicle *v)
Determines the livery of an engine.
static uint8_t MapAircraftMovementState(const Aircraft *v)
Map OTTD aircraft movement states to TTDPatch style movement states (VarAction 2 Variable 0xE2)
bool TestVehicleBuildProbability(Vehicle *v, EngineID engine, BuildProbabilityType type)
Test for vehicle build probablity type.
uint16_t GetVehicleCallback(CallbackID callback, uint32_t param1, uint32_t param2, EngineID engine, const Vehicle *v)
Evaluate a newgrf callback for vehicles.
static uint8_t MapAircraftMovementAction(const Aircraft *v)
Map OTTD aircraft movement states to TTDPatch style movement actions (VarAction 2 Variable 0xE6) This...
void CommitVehicleListOrderChanges()
Deternine default engine sorting and execute recorded ListOrderChanges from AlterVehicleListOrder.
PropertyID
List of NewGRF properties used in Action 0 or Callback 0x36 (CBID_VEHICLE_MODIFY_PROPERTY).
uint8_t GetReverseRailTypeTranslation(RailType railtype, const GRFFile *grffile)
Perform a reverse railtype lookup to get the GRF internal ID.
RailType GetRailTypeTranslation(uint8_t railtype, const GRFFile *grffile)
Translate an index to the GRF-local railtype-translation table into a RailType.
NewGRF handling of rail types.
uint8_t GetReverseRoadTypeTranslation(RoadType roadtype, const GRFFile *grffile)
Perform a reverse roadtype lookup to get the GRF internal ID.
RoadType GetRoadTypeTranslation(RoadTramType rtt, uint8_t tracktype, const GRFFile *grffile)
Translate an index to the GRF-local road/tramtype-translation table into a RoadType.
NewGRF handling of road types.
Action 2 handling.
VarSpriteGroupScope
@ VSG_SCOPE_SELF
Resolved object itself.
@ VSG_SCOPE_PARENT
Related object of the resolved one.
@ VSG_SCOPE_RELATIVE
Relative position (vehicles only)
uint32_t GetRegister(uint i)
Gets the value of a so-called newgrf "register".
RailType GetTileRailType(Tile tile)
Return the rail type of tile, or INVALID_RAILTYPE if this is no rail tile.
Definition: rail.cpp:155
const RailTypeInfo * GetRailTypeInfo(RailType railtype)
Returns a pointer to the Railtype information for a given railtype.
Definition: rail.h:307
bool IsCompatibleRail(RailType enginetype, RailType tiletype)
Checks if an engine of the given RailType can drive on a tile with a given RailType.
Definition: rail.h:322
bool HasPowerOnRail(RailType enginetype, RailType tiletype)
Checks if an engine of the given RailType got power on a tile with a given RailType.
Definition: rail.h:335
@ RTFB_CATENARY
Value for drawing a catenary.
Definition: rail.h:37
RailType GetRailType(Tile t)
Gets the rail type of the given tile.
Definition: rail_map.h:115
RailType
Enumeration for all possible railtypes.
Definition: rail_type.h:27
@ INVALID_RAILTYPE
Flag for invalid railtype.
Definition: rail_type.h:34
Pseudo random number generator.
uint32_t RandomRange(uint32_t limit, const std::source_location location=std::source_location::current())
Pick a random number between 0 and limit - 1, inclusive.
Definition: random_func.hpp:88
const RoadTypeInfo * GetRoadTypeInfo(RoadType roadtype)
Returns a pointer to the Roadtype information for a given roadtype.
Definition: road.h:227
bool HasPowerOnRoad(RoadType enginetype, RoadType tiletype)
Checks if an engine of the given RoadType got power on a tile with a given RoadType.
Definition: road.h:242
@ ROTFB_CATENARY
Value for drawing a catenary.
Definition: road.h:48
RoadType
The different roadtypes we support.
Definition: road_type.h:25
@ INVALID_ROADTYPE
flag for invalid roadtype
Definition: road_type.h:30
Road vehicle states.
A number of safeguards to prevent using unsafe methods.
Base for ships.
Base classes/functions for stations.
Definition of base types and functions in a cross-platform compatible way.
#define lengthof(array)
Return the length of an fixed size array.
Definition: stdafx.h:280
uint8_t subtype
Type of aircraft.
Definition: engine_type.h:104
Aircraft, helicopters, rotors and their shadows belong to this class.
Definition: aircraft.h:72
uint8_t pos
Next desired position of the aircraft.
Definition: aircraft.h:74
uint8_t state
State of the airport.
Definition: aircraft.h:77
uint8_t turn_counter
Ticks between each turn to prevent > 45 degree turns.
Definition: aircraft.h:80
bool IsNormalAircraft() const
Check if the aircraft type is a normal flying device; eg not a rotor or a shadow.
Definition: aircraft.h:121
StationID targetairport
Airport to go to next.
Definition: aircraft.h:76
Finite sTate mAchine (FTA) of an airport.
Definition: airport.h:143
uint8_t delta_z
Z adjustment for helicopter pads.
Definition: airport.h:183
const AirportMovingData * MovingData(uint8_t position) const
Get movement data at a position.
Definition: airport.h:170
uint16_t flag
special flags when moving towards the destination.
Definition: airport.h:134
TTDPAirportType ttd_airport_type
ttdpatch airport type (Small/Large/Helipad/Oilrig)
const AirportFTAClass * GetFTA() const
Get the finite-state machine for this airport or the finite-state machine for the dummy airport in ca...
Definition: station_base.h:317
const AirportSpec * GetSpec() const
Get the AirportSpec that from the airport type of this airport.
Definition: station_base.h:305
VehicleOrderID cur_real_order_index
The index to the current real (non-implicit) order.
Definition: base_consist.h:31
uint16_t vehicle_flags
Used for gradual loading and other miscellaneous things (.
Definition: base_consist.h:34
VehicleType type
Type of vehicle.
Definition: vehicle_type.h:51
Specification of a cargo type.
Definition: cargotype.h:71
CargoClasses classes
Classes of this cargo type.
Definition: cargotype.h:78
uint8_t bitnum
Cargo bit number, is INVALID_CARGO_BITNUM for a non-used spec.
Definition: cargotype.h:73
uint8_t weight
Weight of a single unit of this cargo type in 1/16 ton (62.5 kg).
Definition: cargotype.h:76
static CargoSpec * Get(size_t index)
Retrieve cargo details for the given cargo ID.
Definition: cargotype.h:134
VehicleType type
The engine type.
Definition: engine_base.h:195
uint32_t grfid
The GRF ID of the file the entity belongs to.
Definition: engine_base.h:193
uint16_t internal_id
The internal ID within the GRF file.
Definition: engine_base.h:194
uint8_t misc_flags
Miscellaneous flags.
Definition: engine_type.h:155
EngineID GetID(VehicleType type, uint16_t grf_local_id, uint32_t grfid)
Looks up an EngineID in the EngineOverrideManager.
Definition: engine.cpp:532
CargoID GetDefaultCargoType() const
Determines the default cargo type of an engine.
Definition: engine_base.h:96
GRFFilePropsBase< NUM_CARGO+2 > grf_prop
Properties related the the grf file.
Definition: engine_base.h:77
VehicleType type
Vehicle type, ie VEH_ROAD, VEH_TRAIN, etc.
Definition: engine_base.h:56
const GRFFile * GetGRF() const
Retrieve the NewGRF the engine is tied to.
Definition: engine_base.h:167
uint8_t flags
Flags of the engine.
Definition: engine_base.h:49
uint16_t local_id
id defined by the grf file for this entity
const struct GRFFile * grffile
grf file that introduced this entity
std::array< const struct SpriteGroup *, Tcnt > spritegroup
pointers to the different sprites of the entity
Dynamic data of a loaded NewGRF.
Definition: newgrf.h:108
std::array< uint8_t, NUM_CARGO > cargo_map
Inverse cargo translation table (CargoID -> local ID)
Definition: newgrf.h:131
EngineID first_engine
Cached EngineID of the front vehicle. INVALID_ENGINE for the front vehicle itself.
uint32_t cached_power
Total power of the consist (valid only for the first engine).
uint8_t cached_veh_length
Length of this vehicle in units of 1/VEHICLE_LENGTH of normal length. It is cached because this can b...
GroundVehicleCache gcache
Cache of often calculated values.
bool IsEngine() const
Check if a vehicle is an engine (can be first in a consist).
uint target
local ID
Information about a particular livery.
Definition: livery.h:78
uint32_t position_in_vehicle
Cache for NewGRF var 4D.
Definition: vehicle_base.h:74
uint32_t position_consist_length
Cache for NewGRF var 40.
Definition: vehicle_base.h:70
uint32_t consist_cargo_information
Cache for NewGRF var 42. (Note: The cargotype is untranslated in the cache because the accessing GRF ...
Definition: vehicle_base.h:72
uint8_t cache_valid
Bitset that indicates which cache values are valid.
Definition: vehicle_base.h:75
uint32_t company_information
Cache for NewGRF var 43.
Definition: vehicle_base.h:73
uint32_t position_same_id_length
Cache for NewGRF var 41.
Definition: vehicle_base.h:71
uint16_t MapOldOrder() const
Pack this order into a 16 bits integer as close to the TTD representation as possible.
Definition: order_cmd.cpp:208
DestinationID GetDestination() const
Gets the destination of this order.
Definition: order_base.h:103
bool IsType(OrderType type) const
Check whether this order is of the given type.
Definition: order_base.h:70
TileIndex tile
The base tile of the area.
Definition: tilearea_type.h:19
Tindex index
Index of this pool item.
Definition: pool_type.hpp:238
static Titem * Get(size_t index)
Returns Titem with given index.
Definition: pool_type.hpp:339
static bool IsValidID(size_t index)
Tests whether given index can be used to get valid (non-nullptr) Titem.
Definition: pool_type.hpp:328
static Pool::IterateWrapper< Titem > Iterate(size_t from=0)
Returns an iterable ensemble of all valid Titem.
Definition: pool_type.hpp:388
std::vector< const SpriteGroup * > loaded
List of loaded groups (can be SpriteIDs or Callback results)
std::vector< const SpriteGroup * > loading
List of loading groups (can be SpriteIDs or Callback results)
Interface for SpriteGroup-s to access the gamestate.
const GRFFile * grffile
GRFFile the resolved SpriteGroup belongs to.
CallbackID callback
Callback being resolved.
const SpriteGroup * root_spritegroup
Root SpriteGroup to use for resolving.
virtual ScopeResolver * GetScope(VarSpriteGroupScope scope=VSG_SCOPE_SELF, uint8_t relative=0)
Get a resolver for the scope.
Buses, trucks and trams belong to this class.
Definition: roadveh.h:106
uint8_t state
Definition: roadveh.h:108
uint16_t crashed_ctr
Animation counter when the vehicle has crashed.
Definition: roadveh.h:113
uint8_t overtaking_ctr
The length of the current overtake attempt.
Definition: roadveh.h:112
uint8_t overtaking
Set to RVSB_DRIVE_SIDE when overtaking, otherwise 0.
Definition: roadveh.h:111
Interface to query and set values specific to a single VarSpriteGroupScope (action 2 scope).
ResolverObject & ro
Surrounding resolver object.
virtual uint32_t GetVariable(uint8_t variable, [[maybe_unused]] uint32_t parameter, bool &available) const
Get a variable value.
All ships have this type.
Definition: ship.h:24
TrackBits state
The "track" the ship is following.
Definition: ship.h:26
static T * From(Vehicle *v)
Converts a Vehicle to SpecializedVehicle with type checking.
T * Next() const
Get next vehicle in the chain.
T * First() const
Get the first vehicle in the chain.
virtual const SpriteGroup * Resolve([[maybe_unused]] ResolverObject &object) const
Base sprite group resolver.
Station data structure.
Definition: station_base.h:439
Airport airport
Tile area the airport covers.
Definition: station_base.h:453
'Train' is either a loco or a wagon.
Definition: train.h:89
uint16_t cached_max_speed
Maximum speed of the consist (minimum of the max speed of all vehicles in the consist).
Definition: vehicle_base.h:126
Resolver for a vehicle (chain)
Definition: newgrf_engine.h:47
VehicleScopeResolver self_scope
Scope resolver for the indicated vehicle.
Definition: newgrf_engine.h:56
ScopeResolver * GetScope(VarSpriteGroupScope scope=VSG_SCOPE_SELF, uint8_t relative=0) override
Get a resolver for the scope.
const SpriteGroup * ResolveReal(const RealSpriteGroup *group) const override
Get the real sprites of the grf.
VehicleScopeResolver parent_scope
Scope resolver for its parent vehicle.
Definition: newgrf_engine.h:57
GrfSpecFeature GetFeature() const override
Get the feature number being resolved for.
VehicleResolverObject(EngineID engine_type, const Vehicle *v, WagonOverride wagon_override, bool rotor_in_gui=false, CallbackID callback=CBID_NO_CALLBACK, uint32_t callback_param1=0, uint32_t callback_param2=0)
Resolver of a vehicle (chain).
VehicleScopeResolver relative_scope
Scope resolver for an other vehicle in the chain.
Definition: newgrf_engine.h:59
@ WO_NONE
Resolve no wagon overrides.
Definition: newgrf_engine.h:50
@ WO_SELF
Resolve self-override (helicopter rotors and such).
Definition: newgrf_engine.h:53
@ WO_UNCACHED
Resolve wagon overrides.
Definition: newgrf_engine.h:51
@ WO_CACHED
Resolve wagon overrides using TrainCache::cached_override.
Definition: newgrf_engine.h:52
uint32_t GetDebugID() const override
Get an identifier for the item being resolved.
Resolver for a vehicle scope.
Definition: newgrf_engine.h:22
uint32_t GetTriggers() const override
Get the triggers.
const struct Vehicle * v
The vehicle being resolved.
Definition: newgrf_engine.h:23
EngineID self_type
Type of the vehicle.
Definition: newgrf_engine.h:24
uint32_t GetVariable(uint8_t variable, [[maybe_unused]] uint32_t parameter, bool &available) const override
Get a variable value.
uint32_t GetRandomBits() const override
Get a few random bits.
Sprite sequence for a vehicle part.
Definition: vehicle_base.h:135
Vehicle data structure.
Definition: vehicle_base.h:244
Money GetDisplayProfitThisYear() const
Gets the profit vehicle had this year.
Definition: vehicle_base.h:617
EngineID engine_type
The type of engine used for this vehicle.
Definition: vehicle_base.h:323
Vehicle * Move(int n)
Get the vehicle at offset n of this vehicle chain.
Definition: vehicle_base.h:674
Vehicle * Previous() const
Get the previous vehicle of this vehicle.
Definition: vehicle_base.h:639
int32_t z_pos
z coordinate.
Definition: vehicle_base.h:306
Direction direction
facing
Definition: vehicle_base.h:307
const Engine * GetEngine() const
Retrieves the engine of the vehicle.
Definition: vehicle.cpp:747
VehicleCargoList cargo
The cargo this vehicle is carrying.
Definition: vehicle_base.h:341
Vehicle * First() const
Get the first vehicle of this vehicle chain.
Definition: vehicle_base.h:645
uint16_t cargo_cap
total capacity
Definition: vehicle_base.h:344
VehicleOrderID GetNumOrders() const
Get the number of orders this vehicle has.
Definition: vehicle_base.h:738
uint8_t subtype
subtype (Filled with values from AircraftSubType/DisasterSubType/EffectVehicleType/GroundVehicleSubty...
Definition: vehicle_base.h:355
uint16_t random_bits
Bits used for randomized variational spritegroups.
Definition: vehicle_base.h:335
uint8_t day_counter
Increased by one for each day.
Definition: vehicle_base.h:349
bool HasArticulatedPart() const
Check if an engine has an articulated part.
Definition: vehicle_base.h:963
uint8_t breakdown_ctr
Counter for managing breakdown events.
Definition: vehicle_base.h:299
uint8_t breakdown_delay
Counter for managing breakdown length.
Definition: vehicle_base.h:300
TimerGameCalendar::Date date_of_last_service_newgrf
Last calendar date the vehicle had a service at a depot, unchanged by the date cheat to protect again...
Definition: vehicle_base.h:296
uint8_t subspeed
fractional speed
Definition: vehicle_base.h:329
bool IsArticulatedPart() const
Check if the vehicle is an articulated part of an engine.
Definition: vehicle_base.h:954
Vehicle * Next() const
Get the next vehicle of this vehicle.
Definition: vehicle_base.h:632
uint8_t acceleration
used by train & aircraft
Definition: vehicle_base.h:330
Order current_order
The current order (+ status, like: loading)
Definition: vehicle_base.h:356
CargoID cargo_type
type of cargo this vehicle is carrying
Definition: vehicle_base.h:342
int32_t y_pos
y coordinate.
Definition: vehicle_base.h:305
int32_t x_pos
x coordinate.
Definition: vehicle_base.h:304
Money value
Value of the vehicle.
Definition: vehicle_base.h:275
uint8_t waiting_triggers
Triggers to be yet matched before rerandomizing the random bits.
Definition: vehicle_base.h:334
uint8_t vehstatus
Status.
Definition: vehicle_base.h:354
VehicleCache vcache
Cache of often used vehicle values.
Definition: vehicle_base.h:364
uint32_t motion_counter
counter to occasionally play a vehicle sound.
Definition: vehicle_base.h:331
NewGRFCache grf_cache
Cache of often used calculated NewGRF values.
Definition: vehicle_base.h:363
uint32_t GetGRFID() const
Retrieve the GRF ID of the NewGRF the vehicle is tied to.
Definition: vehicle.cpp:767
GroundVehicleCache * GetGroundVehicleCache()
Access the ground vehicle cache of the vehicle.
Definition: vehicle.cpp:3155
virtual int GetCurrentMaxSpeed() const
Calculates the maximum speed of the vehicle under its current conditions.
Definition: vehicle_base.h:536
virtual bool IsPrimaryVehicle() const
Whether this is the primary vehicle in the chain.
Definition: vehicle_base.h:477
uint16_t load_unload_ticks
Ticks to wait before starting next cycle.
Definition: vehicle_base.h:352
Money GetDisplayProfitLastYear() const
Gets the profit vehicle had last year.
Definition: vehicle_base.h:623
uint8_t spritenum
currently displayed sprite index 0xfd == custom sprite, 0xfe == custom second head sprite 0xff == res...
Definition: vehicle_base.h:315
uint16_t cur_speed
current speed
Definition: vehicle_base.h:328
uint8_t cargo_subtype
Used for livery refits (NewGRF variations)
Definition: vehicle_base.h:343
TimerGameCalendar::Date age
Age in calendar days.
Definition: vehicle_base.h:292
uint8_t breakdowns_since_last_service
Counter for the amount of breakdowns.
Definition: vehicle_base.h:301
TimerGameCalendar::Date max_age
Maximum age.
Definition: vehicle_base.h:294
uint16_t reliability
Reliability.
Definition: vehicle_base.h:297
debug_inline bool IsGroundVehicle() const
Check if the vehicle is a ground vehicle.
Definition: vehicle_base.h:515
uint16_t reliability_spd_dec
Reliability decrease speed.
Definition: vehicle_base.h:298
uint8_t tick_counter
Increased by one for each tick.
Definition: vehicle_base.h:350
TileIndex tile
Current tile index.
Definition: vehicle_base.h:264
StationID last_station_visited
The last station we stopped at.
Definition: vehicle_base.h:337
void InvalidateNewGRFCacheOfChain()
Invalidates cached NewGRF variables of all vehicles in the chain (after the current vehicle)
Definition: vehicle_base.h:504
uint8_t breakdown_chance
Current chance of breakdowns.
Definition: vehicle_base.h:302
TimerGameCalendar::Year build_year
Year the vehicle has been built.
Definition: vehicle_base.h:291
Owner owner
Which company owns the vehicle?
Definition: vehicle_base.h:309
UnitID unitnumber
unit number, for display purposes only
Definition: vehicle_base.h:326
constexpr TileIndex INVALID_TILE
The very nice invalid tile marker.
Definition: tile_type.h:95
Definition of the game-calendar-timer.
Base for the train class.
@ VRF_POWEREDWAGON
Wagon is powered.
Definition: train.h:27
@ VRF_TOGGLE_REVERSE
Used for vehicle var 0xFE bit 8 (toggled each time the train is reversed, accurate for first vehicle ...
Definition: train.h:31
@ VRF_REVERSE_DIRECTION
Reverse the visible direction of the vehicle.
Definition: train.h:28
const Livery * GetEngineLivery(EngineID engine_type, CompanyID company, EngineID parent_engine_type, const Vehicle *v, uint8_t livery_setting)
Determines the livery for a vehicle.
Definition: vehicle.cpp:2064
void VehicleEnteredDepotThisTick(Vehicle *v)
Adds a vehicle to the list of vehicles that visited a depot this tick.
Definition: vehicle.cpp:921
@ VF_BUILT_AS_PROTOTYPE
Vehicle is a prototype (accepted as exclusive preview).
Definition: vehicle_base.h:47
@ VF_CARGO_UNLOADING
Vehicle is unloading cargo.
Definition: vehicle_base.h:46
@ NCVV_COMPANY_INFORMATION
This bit will be set if the NewGRF var 43 currently stored is valid.
Definition: vehicle_base.h:62
@ NCVV_CONSIST_CARGO_INFORMATION
This bit will be set if the NewGRF var 42 currently stored is valid.
Definition: vehicle_base.h:61
@ NCVV_POSITION_CONSIST_LENGTH
This bit will be set if the NewGRF var 40 currently stored is valid.
Definition: vehicle_base.h:59
@ NCVV_POSITION_SAME_ID_LENGTH
This bit will be set if the NewGRF var 41 currently stored is valid.
Definition: vehicle_base.h:60
@ NCVV_POSITION_IN_VEHICLE
This bit will be set if the NewGRF var 4D currently stored is valid.
Definition: vehicle_base.h:63
@ NCVV_END
End of the bits.
Definition: vehicle_base.h:64
@ VS_HIDDEN
Vehicle is not visible.
Definition: vehicle_base.h:33
Functions related to vehicles.
EngineImageType
Visualisation contexts of vehicles and engines.
Definition: vehicle_type.h:78
@ EIT_ON_MAP
Vehicle drawn in viewport.
Definition: vehicle_type.h:79
@ VEH_ROAD
Road vehicle type.
Definition: vehicle_type.h:25
@ VEH_DISASTER
Disaster vehicle type.
Definition: vehicle_type.h:32
@ VEH_AIRCRAFT
Aircraft vehicle type.
Definition: vehicle_type.h:27
@ VEH_SHIP
Ship vehicle type.
Definition: vehicle_type.h:26
@ VEH_EFFECT
Effect vehicle type (smoke, explosions, sparks, bubbles)
Definition: vehicle_type.h:31
@ VEH_TRAIN
Train vehicle type.
Definition: vehicle_type.h:24
static const VehicleID INVALID_VEHICLE
Constant representing a non-existing vehicle.
Definition: vehicle_type.h:54
static const uint VEHICLE_LENGTH
The length of a vehicle in tile units.
Definition: vehicle_type.h:69