OpenTTD Source 20251005-master-ga617d009cc
landscape.cpp
Go to the documentation of this file.
1/*
2 * This file is part of OpenTTD.
3 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
4 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
5 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
6 */
7
12#include "stdafx.h"
13#include "heightmap.h"
14#include "clear_map.h"
15#include "spritecache.h"
16#include "viewport_func.h"
17#include "command_func.h"
18#include "landscape.h"
19#include "void_map.h"
20#include "tgp.h"
21#include "genworld.h"
22#include "fios.h"
23#include "error_func.h"
26#include "water.h"
27#include "effectvehicle_func.h"
28#include "landscape_type.h"
29#include "animated_tile_func.h"
30#include "core/flatset_type.hpp"
31#include "core/random_func.hpp"
32#include "object_base.h"
33#include "company_func.h"
34#include "company_gui.h"
35#include "saveload/saveload.h"
36#include "framerate_type.h"
37#include "landscape_cmd.h"
38#include "terraform_cmd.h"
39#include "station_func.h"
42
43#include "table/strings.h"
44#include "table/sprites.h"
45
46#include "safeguards.h"
47
48extern const TileTypeProcs
49 _tile_type_clear_procs,
50 _tile_type_rail_procs,
53 _tile_type_trees_procs,
54 _tile_type_station_procs,
55 _tile_type_water_procs,
56 _tile_type_void_procs,
57 _tile_type_industry_procs,
58 _tile_type_tunnelbridge_procs,
59 _tile_type_object_procs;
60
66const TileTypeProcs * const _tile_type_procs[16] = {
67 &_tile_type_clear_procs,
68 &_tile_type_rail_procs,
71 &_tile_type_trees_procs,
72 &_tile_type_station_procs,
73 &_tile_type_water_procs,
74 &_tile_type_void_procs,
75 &_tile_type_industry_procs,
76 &_tile_type_tunnelbridge_procs,
77 &_tile_type_object_procs,
78};
79
81extern const uint8_t _slope_to_sprite_offset[32] = {
82 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0,
83 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 17, 0, 15, 18, 0,
84};
85
86static const uint TILE_UPDATE_FREQUENCY_LOG = 8;
88
97static std::unique_ptr<SnowLine> _snow_line;
98
112Point InverseRemapCoords2(int x, int y, bool clamp_to_map, bool *clamped)
113{
114 if (clamped != nullptr) *clamped = false; // Not clamping yet.
115
116 /* Initial x/y world coordinate is like if the landscape
117 * was completely flat on height 0. */
118 Point pt = InverseRemapCoords(x, y);
119
120 const uint min_coord = _settings_game.construction.freeform_edges ? TILE_SIZE : 0;
121 const uint max_x = Map::MaxX() * TILE_SIZE - 1;
122 const uint max_y = Map::MaxY() * TILE_SIZE - 1;
123
124 if (clamp_to_map) {
125 /* Bring the coordinates near to a valid range. At the top we allow a number
126 * of extra tiles. This is mostly due to the tiles on the north side of
127 * the map possibly being drawn higher due to the extra height levels. */
129 Point old_pt = pt;
130 pt.x = Clamp(pt.x, -extra_tiles * TILE_SIZE, max_x);
131 pt.y = Clamp(pt.y, -extra_tiles * TILE_SIZE, max_y);
132 if (clamped != nullptr) *clamped = (pt.x != old_pt.x) || (pt.y != old_pt.y);
133 }
134
135 /* Now find the Z-world coordinate by fix point iteration.
136 * This is a bit tricky because the tile height is non-continuous at foundations.
137 * The clicked point should be approached from the back, otherwise there are regions that are not clickable.
138 * (FOUNDATION_HALFTILE_LOWER on SLOPE_STEEP_S hides north halftile completely)
139 * So give it a z-malus of 4 in the first iterations. */
140 int z = 0;
141 if (clamp_to_map) {
142 for (int i = 0; i < 5; i++) z = GetSlopePixelZ(Clamp(pt.x + std::max(z, 4) - 4, min_coord, max_x), Clamp(pt.y + std::max(z, 4) - 4, min_coord, max_y)) / 2;
143 for (int m = 3; m > 0; m--) z = GetSlopePixelZ(Clamp(pt.x + std::max(z, m) - m, min_coord, max_x), Clamp(pt.y + std::max(z, m) - m, min_coord, max_y)) / 2;
144 for (int i = 0; i < 5; i++) z = GetSlopePixelZ(Clamp(pt.x + z, min_coord, max_x), Clamp(pt.y + z, min_coord, max_y)) / 2;
145 } else {
146 for (int i = 0; i < 5; i++) z = GetSlopePixelZOutsideMap(pt.x + std::max(z, 4) - 4, pt.y + std::max(z, 4) - 4) / 2;
147 for (int m = 3; m > 0; m--) z = GetSlopePixelZOutsideMap(pt.x + std::max(z, m) - m, pt.y + std::max(z, m) - m) / 2;
148 for (int i = 0; i < 5; i++) z = GetSlopePixelZOutsideMap(pt.x + z, pt.y + z ) / 2;
149 }
150
151 pt.x += z;
152 pt.y += z;
153 if (clamp_to_map) {
154 Point old_pt = pt;
155 pt.x = Clamp(pt.x, min_coord, max_x);
156 pt.y = Clamp(pt.y, min_coord, max_y);
157 if (clamped != nullptr) *clamped = *clamped || (pt.x != old_pt.x) || (pt.y != old_pt.y);
158 }
159
160 return pt;
161}
162
172{
173 if (!IsFoundation(f)) return 0;
174
175 if (IsLeveledFoundation(f)) {
176 uint dz = 1 + (IsSteepSlope(s) ? 1 : 0);
177 s = SLOPE_FLAT;
178 return dz;
179 }
180
183 return 0;
184 }
185
188 return 0;
189 }
190
191 uint dz = IsSteepSlope(s) ? 1 : 0;
192 Corner highest_corner = GetHighestSlopeCorner(s);
193
194 switch (f) {
196 s = (((highest_corner == CORNER_W) || (highest_corner == CORNER_S)) ? SLOPE_SW : SLOPE_NE);
197 break;
198
200 s = (((highest_corner == CORNER_S) || (highest_corner == CORNER_E)) ? SLOPE_SE : SLOPE_NW);
201 break;
202
204 s = SlopeWithOneCornerRaised(highest_corner);
205 break;
206
208 s = HalftileSlope(SlopeWithOneCornerRaised(highest_corner), highest_corner);
209 break;
210
211 default: NOT_REACHED();
212 }
213 return dz;
214}
215
216
229uint GetPartialPixelZ(int x, int y, Slope corners)
230{
231 if (IsHalftileSlope(corners)) {
232 /* A foundation is placed on half the tile at a specific corner. This means that,
233 * depending on the corner, that one half of the tile is at the maximum height. */
234 switch (GetHalftileSlopeCorner(corners)) {
235 case CORNER_W:
236 if (x > y) return GetSlopeMaxPixelZ(corners);
237 break;
238
239 case CORNER_S:
240 if (x + y >= (int)TILE_SIZE) return GetSlopeMaxPixelZ(corners);
241 break;
242
243 case CORNER_E:
244 if (x <= y) return GetSlopeMaxPixelZ(corners);
245 break;
246
247 case CORNER_N:
248 if (x + y < (int)TILE_SIZE) return GetSlopeMaxPixelZ(corners);
249 break;
250
251 default: NOT_REACHED();
252 }
253 }
254
255 switch (RemoveHalftileSlope(corners)) {
256 case SLOPE_FLAT: return 0;
257
258 /* One corner is up.*/
259 case SLOPE_N: return x + y <= (int)TILE_SIZE ? (TILE_SIZE - x - y) >> 1 : 0;
260 case SLOPE_E: return y >= x ? (1 + y - x) >> 1 : 0;
261 case SLOPE_S: return x + y >= (int)TILE_SIZE ? (1 + x + y - TILE_SIZE) >> 1 : 0;
262 case SLOPE_W: return x >= y ? (x - y) >> 1 : 0;
263
264 /* Two corners next to each other are up. */
265 case SLOPE_NE: return (TILE_SIZE - x) >> 1;
266 case SLOPE_SE: return (y + 1) >> 1;
267 case SLOPE_SW: return (x + 1) >> 1;
268 case SLOPE_NW: return (TILE_SIZE - y) >> 1;
269
270 /* Three corners are up on the same level. */
271 case SLOPE_ENW: return x + y >= (int)TILE_SIZE ? TILE_HEIGHT - ((1 + x + y - TILE_SIZE) >> 1) : TILE_HEIGHT;
272 case SLOPE_SEN: return y < x ? TILE_HEIGHT - ((x - y) >> 1) : TILE_HEIGHT;
273 case SLOPE_WSE: return x + y <= (int)TILE_SIZE ? TILE_HEIGHT - ((TILE_SIZE - x - y) >> 1) : TILE_HEIGHT;
274 case SLOPE_NWS: return x < y ? TILE_HEIGHT - ((1 + y - x) >> 1) : TILE_HEIGHT;
275
276 /* Two corners at opposite sides are up. */
277 case SLOPE_NS: return x + y < (int)TILE_SIZE ? (TILE_SIZE - x - y) >> 1 : (1 + x + y - TILE_SIZE) >> 1;
278 case SLOPE_EW: return x >= y ? (x - y) >> 1 : (1 + y - x) >> 1;
279
280 /* Very special cases. */
281 case SLOPE_ELEVATED: return TILE_HEIGHT;
282
283 /* Steep slopes. The top is at 2 * TILE_HEIGHT. */
284 case SLOPE_STEEP_N: return (TILE_SIZE - x + TILE_SIZE - y) >> 1;
285 case SLOPE_STEEP_E: return (TILE_SIZE + 1 + y - x) >> 1;
286 case SLOPE_STEEP_S: return (1 + x + y) >> 1;
287 case SLOPE_STEEP_W: return (TILE_SIZE + x - y) >> 1;
288
289 default: NOT_REACHED();
290 }
291}
292
304int GetSlopePixelZ(int x, int y, bool ground_vehicle)
305{
306 TileIndex tile = TileVirtXY(x, y);
307
308 return _tile_type_procs[GetTileType(tile)]->get_slope_z_proc(tile, x, y, ground_vehicle);
309}
310
320{
321 if (IsInsideBS(x, 0, Map::SizeX() * TILE_SIZE) && IsInsideBS(y, 0, Map::SizeY() * TILE_SIZE)) {
322 return GetSlopePixelZ(x, y, false);
323 } else {
324 return _tile_type_procs[MP_VOID]->get_slope_z_proc(INVALID_TILE, x, y, false);
325 }
326}
327
338{
339 assert(!IsHalftileSlope(tileh));
340 return ((tileh & SlopeWithOneCornerRaised(corner)) != 0 ? 1 : 0) + (tileh == SteepSlope(corner) ? 1 : 0);
341}
342
355void GetSlopePixelZOnEdge(Slope tileh, DiagDirection edge, int &z1, int &z2)
356{
357 static const Slope corners[4][4] = {
358 /* corner | steep slope
359 * z1 z2 | z1 z2 */
360 {SLOPE_E, SLOPE_N, SLOPE_STEEP_E, SLOPE_STEEP_N}, // DIAGDIR_NE, z1 = E, z2 = N
361 {SLOPE_S, SLOPE_E, SLOPE_STEEP_S, SLOPE_STEEP_E}, // DIAGDIR_SE, z1 = S, z2 = E
362 {SLOPE_S, SLOPE_W, SLOPE_STEEP_S, SLOPE_STEEP_W}, // DIAGDIR_SW, z1 = S, z2 = W
363 {SLOPE_W, SLOPE_N, SLOPE_STEEP_W, SLOPE_STEEP_N}, // DIAGDIR_NW, z1 = W, z2 = N
364 };
365
366 int halftile_test = (IsHalftileSlope(tileh) ? SlopeWithOneCornerRaised(GetHalftileSlopeCorner(tileh)) : 0);
367 if (halftile_test == corners[edge][0]) z2 += TILE_HEIGHT; // The slope is non-continuous in z2. z2 is on the upper side.
368 if (halftile_test == corners[edge][1]) z1 += TILE_HEIGHT; // The slope is non-continuous in z1. z1 is on the upper side.
369
370 if ((tileh & corners[edge][0]) != 0) z1 += TILE_HEIGHT; // z1 is raised
371 if ((tileh & corners[edge][1]) != 0) z2 += TILE_HEIGHT; // z2 is raised
372 if (RemoveHalftileSlope(tileh) == corners[edge][2]) z1 += TILE_HEIGHT; // z1 is highest corner of a steep slope
373 if (RemoveHalftileSlope(tileh) == corners[edge][3]) z2 += TILE_HEIGHT; // z2 is highest corner of a steep slope
374}
375
383std::tuple<Slope, int> GetFoundationSlope(TileIndex tile)
384{
385 auto [tileh, z] = GetTileSlopeZ(tile);
386 Foundation f = _tile_type_procs[GetTileType(tile)]->get_foundation_proc(tile, tileh);
387 z += ApplyFoundationToSlope(f, tileh);
388 return {tileh, z};
389}
390
391
392bool HasFoundationNW(TileIndex tile, Slope slope_here, uint z_here)
393{
394 int z_W_here = z_here;
395 int z_N_here = z_here;
396 GetSlopePixelZOnEdge(slope_here, DIAGDIR_NW, z_W_here, z_N_here);
397
398 auto [slope, z] = GetFoundationPixelSlope(TileAddXY(tile, 0, -1));
399 int z_W = z;
400 int z_N = z;
401 GetSlopePixelZOnEdge(slope, DIAGDIR_SE, z_W, z_N);
402
403 return (z_N_here > z_N) || (z_W_here > z_W);
404}
405
406
407bool HasFoundationNE(TileIndex tile, Slope slope_here, uint z_here)
408{
409 int z_E_here = z_here;
410 int z_N_here = z_here;
411 GetSlopePixelZOnEdge(slope_here, DIAGDIR_NE, z_E_here, z_N_here);
412
413 auto [slope, z] = GetFoundationPixelSlope(TileAddXY(tile, -1, 0));
414 int z_E = z;
415 int z_N = z;
416 GetSlopePixelZOnEdge(slope, DIAGDIR_SW, z_E, z_N);
417
418 return (z_N_here > z_N) || (z_E_here > z_E);
419}
420
427{
428 if (!IsFoundation(f)) return;
429
430 /* Two part foundations must be drawn separately */
431 assert(f != FOUNDATION_STEEP_BOTH);
432
433 uint sprite_block = 0;
434 auto [slope, z] = GetFoundationPixelSlope(ti->tile);
435
436 /* Select the needed block of foundations sprites
437 * Block 0: Walls at NW and NE edge
438 * Block 1: Wall at NE edge
439 * Block 2: Wall at NW edge
440 * Block 3: No walls at NW or NE edge
441 */
442 if (!HasFoundationNW(ti->tile, slope, z)) sprite_block += 1;
443 if (!HasFoundationNE(ti->tile, slope, z)) sprite_block += 2;
444
445 /* Use the original slope sprites if NW and NE borders should be visible */
446 SpriteID leveled_base = (sprite_block == 0 ? (int)SPR_FOUNDATION_BASE : (SPR_SLOPES_VIRTUAL_BASE + sprite_block * TRKFOUND_BLOCK_SIZE));
447 SpriteID inclined_base = SPR_SLOPES_VIRTUAL_BASE + SLOPES_INCLINED_OFFSET + sprite_block * TRKFOUND_BLOCK_SIZE;
448 SpriteID halftile_base = SPR_HALFTILE_FOUNDATION_BASE + sprite_block * HALFTILE_BLOCK_SIZE;
449
450 if (IsSteepSlope(ti->tileh)) {
452 /* Lower part of foundation */
453 static constexpr SpriteBounds bounds{{}, {TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1}, {}};
454 AddSortableSpriteToDraw(leveled_base + (ti->tileh & ~SLOPE_STEEP), PAL_NONE, *ti, bounds);
455 }
456
457 Corner highest_corner = GetHighestSlopeCorner(ti->tileh);
458 ti->z += ApplyPixelFoundationToSlope(f, ti->tileh);
459
460 if (IsInclinedFoundation(f)) {
461 /* inclined foundation */
462 uint8_t inclined = highest_corner * 2 + (f == FOUNDATION_INCLINED_Y ? 1 : 0);
463
464 SpriteBounds bounds{{}, {1, 1, TILE_HEIGHT}, {}};
465 if (f == FOUNDATION_INCLINED_X) bounds.extent.x = TILE_SIZE;
466 if (f == FOUNDATION_INCLINED_Y) bounds.extent.y = TILE_SIZE;
467 AddSortableSpriteToDraw(inclined_base + inclined, PAL_NONE, *ti, bounds);
468 OffsetGroundSprite(0, 0);
469 } else if (IsLeveledFoundation(f)) {
470 static constexpr SpriteBounds bounds{{0, 0, -(int)TILE_HEIGHT}, {TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1}, {}};
471 AddSortableSpriteToDraw(leveled_base + SlopeWithOneCornerRaised(highest_corner), PAL_NONE, *ti, bounds);
473 } else if (f == FOUNDATION_STEEP_LOWER) {
474 /* one corner raised */
476 } else {
477 /* halftile foundation */
478 int8_t x_bb = (((highest_corner == CORNER_W) || (highest_corner == CORNER_S)) ? TILE_SIZE / 2 : 0);
479 int8_t y_bb = (((highest_corner == CORNER_S) || (highest_corner == CORNER_E)) ? TILE_SIZE / 2 : 0);
480
481 SpriteBounds bounds{{x_bb, y_bb, TILE_HEIGHT}, {TILE_SIZE / 2, TILE_SIZE / 2, TILE_HEIGHT - 1}, {}};
482 AddSortableSpriteToDraw(halftile_base + highest_corner, PAL_NONE, *ti, bounds);
483 /* Reposition ground sprite back to original position after bounding box change above. This is similar to
484 * RemapCoords() but without zoom scaling. */
485 Point pt = {(y_bb - x_bb) * 2, y_bb + x_bb};
486 OffsetGroundSprite(-pt.x, -pt.y);
487 }
488 } else {
489 if (IsLeveledFoundation(f)) {
490 /* leveled foundation */
491 static constexpr SpriteBounds bounds{{}, {TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1}, {}};
492 AddSortableSpriteToDraw(leveled_base + ti->tileh, PAL_NONE, *ti, bounds);
494 } else if (IsNonContinuousFoundation(f)) {
495 /* halftile foundation */
496 Corner halftile_corner = GetHalftileFoundationCorner(f);
497 int8_t x_bb = (((halftile_corner == CORNER_W) || (halftile_corner == CORNER_S)) ? TILE_SIZE / 2 : 0);
498 int8_t y_bb = (((halftile_corner == CORNER_S) || (halftile_corner == CORNER_E)) ? TILE_SIZE / 2 : 0);
499
500 SpriteBounds bounds{{x_bb, y_bb, 0}, {TILE_SIZE / 2, TILE_SIZE / 2, TILE_HEIGHT - 1}, {}};
501 AddSortableSpriteToDraw(halftile_base + halftile_corner, PAL_NONE, *ti, bounds);
502 /* Reposition ground sprite back to original position after bounding box change above. This is similar to
503 * RemapCoords() but without zoom scaling. */
504 Point pt = {(y_bb - x_bb) * 2, y_bb + x_bb};
505 OffsetGroundSprite(-pt.x, -pt.y);
506 } else if (IsSpecialRailFoundation(f)) {
507 /* anti-zig-zag foundation */
508 SpriteID spr;
509 if (ti->tileh == SLOPE_NS || ti->tileh == SLOPE_EW) {
510 /* half of leveled foundation under track corner */
512 } else {
513 /* tile-slope = sloped along X/Y, foundation-slope = three corners raised */
514 spr = inclined_base + 2 * GetRailFoundationCorner(f) + ((ti->tileh == SLOPE_SW || ti->tileh == SLOPE_NE) ? 1 : 0);
515 }
516 static constexpr SpriteBounds bounds{{}, {TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1}, {}};
517 AddSortableSpriteToDraw(spr, PAL_NONE, *ti, bounds);
518 OffsetGroundSprite(0, 0);
519 } else {
520 /* inclined foundation */
521 uint8_t inclined = GetHighestSlopeCorner(ti->tileh) * 2 + (f == FOUNDATION_INCLINED_Y ? 1 : 0);
522
523 SpriteBounds bounds{{}, {1, 1, TILE_HEIGHT}, {}};
524 if (f == FOUNDATION_INCLINED_X) bounds.extent.x = TILE_SIZE;
525 if (f == FOUNDATION_INCLINED_Y) bounds.extent.y = TILE_SIZE;
526 AddSortableSpriteToDraw(inclined_base + inclined, PAL_NONE, *ti, bounds);
527 OffsetGroundSprite(0, 0);
528 }
529 ti->z += ApplyPixelFoundationToSlope(f, ti->tileh);
530 }
531}
532
533void DoClearSquare(TileIndex tile)
534{
535 /* If the tile can have animation and we clear it, delete it from the animated tile list. */
536 if (MayAnimateTile(tile)) DeleteAnimatedTile(tile, true);
537
538 bool remove = IsDockingTile(tile);
541 if (remove) RemoveDockingTile(tile);
542
545}
546
557TrackStatus GetTileTrackStatus(TileIndex tile, TransportType mode, uint sub_mode, DiagDirection side)
558{
559 return _tile_type_procs[GetTileType(tile)]->get_tile_track_status_proc(tile, mode, sub_mode, side);
560}
561
568void ChangeTileOwner(TileIndex tile, Owner old_owner, Owner new_owner)
569{
570 _tile_type_procs[GetTileType(tile)]->change_tile_owner_proc(tile, old_owner, new_owner);
571}
572
573void GetTileDesc(TileIndex tile, TileDesc &td)
574{
576}
577
584{
585 return _snow_line != nullptr;
586}
587
593void SetSnowLine(std::unique_ptr<SnowLine> &&snow_line)
594{
595 _snow_line = std::move(snow_line);
596}
597
603uint8_t GetSnowLine()
604{
606
607 TimerGameCalendar::YearMonthDay ymd = TimerGameCalendar::ConvertDateToYMD(TimerGameCalendar::date);
608 return _snow_line->table[ymd.month][ymd.day];
609}
610
617{
618 return _snow_line == nullptr ? _settings_game.game_creation.snow_line_height : _snow_line->highest_value;
619}
620
627{
628 return _snow_line == nullptr ? _settings_game.game_creation.snow_line_height : _snow_line->lowest_value;
629}
630
636{
637 _snow_line = nullptr;
638}
639
645{
646 auto check_tile = [](uint x, uint y) -> bool {
647 auto [slope, h] = GetTilePixelSlopeOutsideMap(x, y);
648 return ((slope == SLOPE_FLAT) && (h == 0));
649 };
650
651 /* Check the map corners. */
652 if (!check_tile(0, 0)) return false;
653 if (!check_tile(0, Map::SizeY())) return false;
654 if (!check_tile(Map::SizeX(), 0)) return false;
655 if (!check_tile(Map::SizeX(), Map::SizeY())) return false;
656
657 /* Check the map edges.*/
658 for (uint x = 0; x <= Map::SizeX(); x++) {
659 if (!check_tile(x, 0)) return false;
660 if (!check_tile(x, Map::SizeY())) return false;
661 }
662 for (uint y = 1; y < Map::SizeY(); y++) {
663 if (!check_tile(0, y)) return false;
664 if (!check_tile(Map::SizeX(), y)) return false;
665 }
666
667 return true;
668}
669
677{
679 bool do_clear = false;
680 /* Test for stuff which results in water when cleared. Then add the cost to also clear the water. */
681 if (flags.Test(DoCommandFlag::ForceClearTile) && HasTileWaterClass(tile) && IsTileOnWater(tile) && !IsWaterTile(tile) && !IsCoastTile(tile)) {
682 if (flags.Test(DoCommandFlag::Auto) && GetWaterClass(tile) == WATER_CLASS_CANAL) return CommandCost(STR_ERROR_MUST_DEMOLISH_CANAL_FIRST);
683 do_clear = true;
684 cost.AddCost(GetWaterClass(tile) == WATER_CLASS_CANAL ? _price[PR_CLEAR_CANAL] : _price[PR_CLEAR_WATER]);
685 }
686
688 if (c != nullptr && (int)GB(c->clear_limit, 16, 16) < 1) {
689 return CommandCost(STR_ERROR_CLEARING_LIMIT_REACHED);
690 }
691
692 const ClearedObjectArea *coa = FindClearedObject(tile);
693
694 /* If this tile was the first tile which caused object destruction, always
695 * pass it on to the tile_type_proc. That way multiple test runs and the exec run stay consistent. */
696 if (coa != nullptr && coa->first_tile != tile) {
697 /* If this tile belongs to an object which was already cleared via another tile, pretend it has been
698 * already removed.
699 * However, we need to check stuff, which is not the same for all object tiles. (e.g. being on water or not) */
700
701 /* If a object is removed, it leaves either bare land or water. */
702 if (flags.Test(DoCommandFlag::NoWater) && HasTileWaterClass(tile) && IsTileOnWater(tile)) {
703 return CommandCost(STR_ERROR_CAN_T_BUILD_ON_WATER);
704 }
705 } else {
706 cost.AddCost(_tile_type_procs[GetTileType(tile)]->clear_tile_proc(tile, flags));
707 }
708
709 if (flags.Test(DoCommandFlag::Execute)) {
710 if (c != nullptr) c->clear_limit -= 1 << 16;
711 if (do_clear) {
712 if (IsWaterTile(tile) && IsCanal(tile)) {
713 Owner owner = GetTileOwner(tile);
714 if (Company::IsValidID(owner)) {
715 Company::Get(owner)->infrastructure.water--;
717 }
718 }
719 DoClearSquare(tile);
721 }
722 }
723 return cost;
724}
725
734std::tuple<CommandCost, Money> CmdClearArea(DoCommandFlags flags, TileIndex tile, TileIndex start_tile, bool diagonal)
735{
736 if (start_tile >= Map::Size()) return { CMD_ERROR, 0 };
737
740 CommandCost last_error = CMD_ERROR;
741 bool had_success = false;
742
744 int limit = (c == nullptr ? INT32_MAX : GB(c->clear_limit, 16, 16));
745
746 if (tile != start_tile) flags.Set(DoCommandFlag::ForceClearTile);
747
748 std::unique_ptr<TileIterator> iter = TileIterator::Create(tile, start_tile, diagonal);
749 for (; *iter != INVALID_TILE; ++(*iter)) {
750 TileIndex t = *iter;
752 if (ret.Failed()) {
753 last_error = std::move(ret);
754
755 /* We may not clear more tiles. */
756 if (c != nullptr && GB(c->clear_limit, 16, 16) < 1) break;
757 continue;
758 }
759
760 had_success = true;
761 if (flags.Test(DoCommandFlag::Execute)) {
762 money -= ret.GetCost();
763 if (ret.GetCost() > 0 && money < 0) {
764 return { cost, ret.GetCost() };
765 }
767
768 /* draw explosion animation...
769 * Disable explosions when game is paused. Looks silly and blocks the view. */
770 if ((t == tile || t == start_tile) && _pause_mode.None()) {
771 /* big explosion in two corners, or small explosion for single tiles */
773 TileX(tile) == TileX(start_tile) && TileY(tile) == TileY(start_tile) ? EV_EXPLOSION_SMALL : EV_EXPLOSION_LARGE
774 );
775 }
776 } else {
777 /* When we're at the clearing limit we better bail (unneed) testing as well. */
778 if (ret.GetCost() != 0 && --limit <= 0) break;
779 }
780 cost.AddCost(ret.GetCost());
781 }
782
783 return { had_success ? cost : last_error, 0 };
784}
785
786
787TileIndex _cur_tileloop_tile;
788
793{
795
796 /* The pseudorandom sequence of tiles is generated using a Galois linear feedback
797 * shift register (LFSR). This allows a deterministic pseudorandom ordering, but
798 * still with minimal state and fast iteration. */
799
800 /* Maximal length LFSR feedback terms, from 12-bit (for 64x64 maps) to 24-bit (for 4096x4096 maps).
801 * Extracted from http://www.ece.cmu.edu/~koopman/lfsr/ */
802 static const uint32_t feedbacks[] = {
803 0xD8F, 0x1296, 0x2496, 0x4357, 0x8679, 0x1030E, 0x206CD, 0x403FE, 0x807B8, 0x1004B2, 0x2006A8, 0x4004B2, 0x800B87
804 };
805 static_assert(lengthof(feedbacks) == 2 * MAX_MAP_SIZE_BITS - 2 * MIN_MAP_SIZE_BITS + 1);
806 const uint32_t feedback = feedbacks[Map::LogX() + Map::LogY() - 2 * MIN_MAP_SIZE_BITS];
807
808 /* We update every tile every TILE_UPDATE_FREQUENCY ticks, so divide the map size by 2^TILE_UPDATE_FREQUENCY_LOG = TILE_UPDATE_FREQUENCY */
809 static_assert(2 * MIN_MAP_SIZE_BITS >= TILE_UPDATE_FREQUENCY_LOG);
810 uint count = 1 << (Map::LogX() + Map::LogY() - TILE_UPDATE_FREQUENCY_LOG);
811
812 TileIndex tile = _cur_tileloop_tile;
813 /* The LFSR cannot have a zeroed state. */
814 assert(tile != 0);
815
816 /* Manually update tile 0 every TILE_UPDATE_FREQUENCY ticks - the LFSR never iterates over it itself. */
818 _tile_type_procs[GetTileType(0)]->tile_loop_proc(TileIndex{});
819 count--;
820 }
821
822 while (count--) {
823 _tile_type_procs[GetTileType(tile)]->tile_loop_proc(tile);
824
825 /* Get the next tile in sequence using a Galois LFSR. */
826 tile = TileIndex{(tile.base() >> 1) ^ (-(int32_t)(tile.base() & 1) & feedback)};
827 }
828
829 _cur_tileloop_tile = tile;
830}
831
832void InitializeLandscape()
833{
834 for (uint y = _settings_game.construction.freeform_edges ? 1 : 0; y < Map::MaxY(); y++) {
835 for (uint x = _settings_game.construction.freeform_edges ? 1 : 0; x < Map::MaxX(); x++) {
836 MakeClear(TileXY(x, y), CLEAR_GRASS, 3);
837 SetTileHeight(TileXY(x, y), 0);
840 }
841 }
842
843 for (uint x = 0; x < Map::SizeX(); x++) MakeVoid(TileXY(x, Map::MaxY()));
844 for (uint y = 0; y < Map::SizeY(); y++) MakeVoid(TileXY(Map::MaxX(), y));
845}
846
847static const uint8_t _genterrain_tbl_1[5] = { 10, 22, 33, 37, 4 };
848static const uint8_t _genterrain_tbl_2[5] = { 0, 0, 0, 0, 33 };
849
850static void GenerateTerrain(int type, uint flag)
851{
852 uint32_t r = Random();
853
854 /* Choose one of the templates from the graphics file. */
855 const Sprite *templ = GetSprite((((r >> 24) * _genterrain_tbl_1[type]) >> 8) + _genterrain_tbl_2[type] + SPR_MAPGEN_BEGIN, SpriteType::MapGen);
856 if (templ == nullptr) UserError("Map generator sprites could not be loaded");
857
858 /* Chose a random location to apply the template to. */
859 uint x = r & Map::MaxX();
860 uint y = (r >> Map::LogX()) & Map::MaxY();
861
862 /* Make sure the template is not too close to the upper edges; bottom edges are checked later. */
863 uint edge_distance = 1 + (_settings_game.construction.freeform_edges ? 1 : 0);
864 if (x <= edge_distance || y <= edge_distance) return;
865
866 DiagDirection direction = (DiagDirection)GB(r, 22, 2);
867 uint w = templ->width;
868 uint h = templ->height;
869
870 if (DiagDirToAxis(direction) == AXIS_Y) std::swap(w, h);
871
872 const uint8_t *p = reinterpret_cast<const uint8_t *>(templ->data);
873
874 if ((flag & 4) != 0) {
875 /* This is only executed in secondary/tertiary loops to generate the terrain for arctic and tropic.
876 * It prevents the templates to be applied to certain parts of the map based on the flags, thus
877 * creating regions with different elevations/topography. */
878 uint xw = x * Map::SizeY();
879 uint yw = y * Map::SizeX();
880 uint bias = (Map::SizeX() + Map::SizeY()) * 16;
881
882 switch (flag & 3) {
883 default: NOT_REACHED();
884 case 0:
885 if (xw + yw > Map::Size() - bias) return;
886 break;
887
888 case 1:
889 if (yw < xw + bias) return;
890 break;
891
892 case 2:
893 if (xw + yw < Map::Size() + bias) return;
894 break;
895
896 case 3:
897 if (xw < yw + bias) return;
898 break;
899 }
900 }
901
902 /* Ensure the template does not overflow at the bottom edges of the map; upper edges were checked before. */
903 if (x + w >= Map::MaxX()) return;
904 if (y + h >= Map::MaxY()) return;
905
906 TileIndex tile = TileXY(x, y);
907
908 /* Get the template and overlay in a particular direction over the map's height from the given
909 * origin point (tile), and update the map's height everywhere where the height from the template
910 * is higher than the height of the map. In other words, this only raises the tile heights. */
911 switch (direction) {
912 default: NOT_REACHED();
913 case DIAGDIR_NE:
914 do {
915 TileIndex tile_cur = tile;
916
917 for (uint w_cur = w; w_cur != 0; --w_cur) {
918 if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4));
919 p++;
920 tile_cur += TileDiffXY(1, 0);
921 }
922 tile += TileDiffXY(0, 1);
923 } while (--h != 0);
924 break;
925
926 case DIAGDIR_SE:
927 do {
928 TileIndex tile_cur = tile;
929
930 for (uint h_cur = h; h_cur != 0; --h_cur) {
931 if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4));
932 p++;
933 tile_cur += TileDiffXY(0, 1);
934 }
935 tile += TileDiffXY(1, 0);
936 } while (--w != 0);
937 break;
938
939 case DIAGDIR_SW:
940 tile += TileDiffXY(w - 1, 0);
941 do {
942 TileIndex tile_cur = tile;
943
944 for (uint w_cur = w; w_cur != 0; --w_cur) {
945 if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4));
946 p++;
947 tile_cur -= TileDiffXY(1, 0);
948 }
949 tile += TileDiffXY(0, 1);
950 } while (--h != 0);
951 break;
952
953 case DIAGDIR_NW:
954 tile += TileDiffXY(0, h - 1);
955 do {
956 TileIndex tile_cur = tile;
957
958 for (uint h_cur = h; h_cur != 0; --h_cur) {
959 if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4));
960 p++;
961 tile_cur -= TileDiffXY(0, 1);
962 }
963 tile += TileDiffXY(1, 0);
964 } while (--w != 0);
965 break;
966 }
967}
968
969
970#include "table/genland.h"
971
972static void CreateDesertOrRainForest(uint desert_tropic_line)
973{
974 uint update_freq = Map::Size() / 4;
975
976 for (const auto tile : Map::Iterate()) {
977 if ((tile % update_freq) == 0) IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
978
979 if (!IsValidTile(tile)) continue;
980
981 auto allows_desert = [tile, desert_tropic_line](auto &offset) {
982 TileIndex t = AddTileIndexDiffCWrap(tile, offset);
983 return t == INVALID_TILE || (TileHeight(t) < desert_tropic_line && !IsTileType(t, MP_WATER));
984 };
985 if (std::all_of(std::begin(_make_desert_or_rainforest_data), std::end(_make_desert_or_rainforest_data), allows_desert)) {
987 }
988 }
989
990 for (uint i = 0; i != TILE_UPDATE_FREQUENCY; i++) {
992
993 RunTileLoop();
994 }
995
996 for (const auto tile : Map::Iterate()) {
997 if ((tile % update_freq) == 0) IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
998
999 if (!IsValidTile(tile)) continue;
1000
1001 auto allows_rainforest = [tile](auto &offset) {
1002 TileIndex t = AddTileIndexDiffCWrap(tile, offset);
1003 return t == INVALID_TILE || !IsTileType(t, MP_CLEAR) || !IsClearGround(t, CLEAR_DESERT);
1004 };
1005 if (std::all_of(std::begin(_make_desert_or_rainforest_data), std::end(_make_desert_or_rainforest_data), allows_rainforest)) {
1007 }
1008 }
1009}
1010
1016static bool FindSpring(TileIndex tile)
1017{
1018 int reference_height;
1019 if (!IsTileFlat(tile, &reference_height) || IsWaterTile(tile)) return false;
1020
1021 /* In the tropics rivers start in the rainforest. */
1022 if (_settings_game.game_creation.landscape == LandscapeType::Tropic && GetTropicZone(tile) != TROPICZONE_RAINFOREST) return false;
1023
1024 /* Are there enough higher tiles to warrant a 'spring'? */
1025 uint num = 0;
1026 for (int dx = -1; dx <= 1; dx++) {
1027 for (int dy = -1; dy <= 1; dy++) {
1028 TileIndex t = TileAddWrap(tile, dx, dy);
1029 if (t != INVALID_TILE && GetTileMaxZ(t) > reference_height) num++;
1030 }
1031 }
1032
1033 if (num < 4) return false;
1034
1035 /* Are we near the top of a hill? */
1036 for (int dx = -16; dx <= 16; dx++) {
1037 for (int dy = -16; dy <= 16; dy++) {
1038 TileIndex t = TileAddWrap(tile, dx, dy);
1039 if (t != INVALID_TILE && GetTileMaxZ(t) > reference_height + 2) return false;
1040 }
1041 }
1042
1043 return true;
1044}
1045
1051static void MakeLake(TileIndex tile, uint height_lake)
1052{
1053 if (!IsValidTile(tile) || TileHeight(tile) != height_lake || !IsTileFlat(tile)) return;
1054 if (_settings_game.game_creation.landscape == LandscapeType::Tropic && GetTropicZone(tile) == TROPICZONE_DESERT) return;
1055
1056 for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
1057 TileIndex t = tile + TileOffsByDiagDir(d);
1058 if (IsWaterTile(t)) {
1060 return;
1061 }
1062 }
1063}
1064
1070void RiverMakeWider(TileIndex tile, TileIndex origin_tile)
1071{
1072 /* Don't expand into void tiles. */
1073 if (!IsValidTile(tile)) return;
1074
1075 /* If the tile is already sea or river, don't expand. */
1076 if (IsWaterTile(tile)) return;
1077
1078 /* If the tile is at height 0 after terraforming but the ocean hasn't flooded yet, don't build river. */
1079 if (GetTileMaxZ(tile) == 0) return;
1080
1081 Slope cur_slope = GetTileSlope(tile);
1082 Slope desired_slope = GetTileSlope(origin_tile); // Initialize matching the origin tile as a shortcut if no terraforming is needed.
1083
1084 /* Never flow uphill. */
1085 if (GetTileMaxZ(tile) > GetTileMaxZ(origin_tile)) return;
1086
1087 /* If the new tile can't hold a river tile, try terraforming. */
1088 if (!IsTileFlat(tile) && !IsInclinedSlope(cur_slope)) {
1089 /* Don't try to terraform steep slopes. */
1090 if (IsSteepSlope(cur_slope)) return;
1091
1092 bool flat_river_found = false;
1093 bool sloped_river_found = false;
1094
1095 /* There are two common possibilities:
1096 * 1. River flat, adjacent tile has one corner lowered.
1097 * 2. River descending, adjacent tile has either one or three corners raised.
1098 */
1099
1100 /* First, determine the desired slope based on adjacent river tiles. This doesn't necessarily match the origin tile for the SpiralTileSequence. */
1101 for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
1102 TileIndex other_tile = TileAddByDiagDir(tile, d);
1103 Slope other_slope = GetTileSlope(other_tile);
1104
1105 /* Only consider river tiles. */
1106 if (IsWaterTile(other_tile) && IsRiver(other_tile)) {
1107 /* If the adjacent river tile flows downhill, we need to check where we are relative to the slope. */
1108 if (IsInclinedSlope(other_slope) && GetTileMaxZ(tile) == GetTileMaxZ(other_tile)) {
1109 /* Check for a parallel slope. If we don't find one, we're above or below the slope instead. */
1112 desired_slope = other_slope;
1113 sloped_river_found = true;
1114 break;
1115 }
1116 }
1117 /* If we find an adjacent river tile, remember it. We'll terraform to match it later if we don't find a slope. */
1118 if (IsTileFlat(other_tile)) flat_river_found = true;
1119 }
1120 }
1121 /* We didn't find either an inclined or flat river, so we're climbing the wrong slope. Bail out. */
1122 if (!sloped_river_found && !flat_river_found) return;
1123
1124 /* We didn't find an inclined river, but there is a flat river. */
1125 if (!sloped_river_found && flat_river_found) desired_slope = SLOPE_FLAT;
1126
1127 /* Now that we know the desired slope, it's time to terraform! */
1128
1129 /* If the river is flat and the adjacent tile has one corner lowered, we want to raise it. */
1130 if (desired_slope == SLOPE_FLAT && IsSlopeWithThreeCornersRaised(cur_slope)) {
1131 /* Make sure we're not affecting an existing river slope tile. */
1132 for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
1133 TileIndex other_tile = TileAddByDiagDir(tile, d);
1134 if (IsInclinedSlope(GetTileSlope(other_tile)) && IsWaterTile(other_tile)) return;
1135 }
1137
1138 /* If the river is descending and the adjacent tile has either one or three corners raised, we want to make it match the slope. */
1139 } else if (IsInclinedSlope(desired_slope)) {
1140 /* Don't break existing flat river tiles by terraforming under them. */
1141 DiagDirection river_direction = ReverseDiagDir(GetInclinedSlopeDirection(desired_slope));
1142
1143 for (DiagDirDiff d = DIAGDIRDIFF_BEGIN; d < DIAGDIRDIFF_END; d++) {
1144 /* We don't care about downstream or upstream tiles, just the riverbanks. */
1145 if (d == DIAGDIRDIFF_SAME || d == DIAGDIRDIFF_REVERSE) continue;
1146
1147 TileIndex other_tile = (TileAddByDiagDir(tile, ChangeDiagDir(river_direction, d)));
1148 if (IsWaterTile(other_tile) && IsRiver(other_tile) && IsTileFlat(other_tile)) return;
1149 }
1150
1151 /* Get the corners which are different between the current and desired slope. */
1152 Slope to_change = cur_slope ^ desired_slope;
1153
1154 /* Lower unwanted corners first. If only one corner is raised, no corners need lowering. */
1155 if (!IsSlopeWithOneCornerRaised(cur_slope)) {
1156 to_change = to_change & ComplementSlope(desired_slope);
1158 }
1159
1160 /* Now check the match and raise any corners needed. */
1161 cur_slope = GetTileSlope(tile);
1162 if (cur_slope != desired_slope && IsSlopeWithOneCornerRaised(cur_slope)) {
1163 to_change = cur_slope ^ desired_slope;
1165 }
1166 }
1167 /* Update cur_slope after possibly terraforming. */
1168 cur_slope = GetTileSlope(tile);
1169 }
1170
1171 /* Sloped rivers need water both upstream and downstream. */
1172 if (IsInclinedSlope(cur_slope)) {
1173 DiagDirection slope_direction = GetInclinedSlopeDirection(cur_slope);
1174
1175 TileIndex upstream_tile = TileAddByDiagDir(tile, slope_direction);
1176 TileIndex downstream_tile = TileAddByDiagDir(tile, ReverseDiagDir(slope_direction));
1177
1178 /* Don't look outside the map. */
1179 if (!IsValidTile(upstream_tile) || !IsValidTile(downstream_tile)) return;
1180
1181 /* Downstream might be new ocean created by our terraforming, and it hasn't flooded yet. */
1182 bool downstream_is_ocean = GetTileZ(downstream_tile) == 0 && (GetTileSlope(downstream_tile) == SLOPE_FLAT || IsSlopeWithOneCornerRaised(GetTileSlope(downstream_tile)));
1183
1184 /* If downstream is dry, flat, and not ocean, try making it a river tile. */
1185 if (!IsWaterTile(downstream_tile) && !downstream_is_ocean) {
1186 /* If the tile upstream isn't flat, don't bother. */
1187 if (GetTileSlope(downstream_tile) != SLOPE_FLAT) return;
1188
1189 MakeRiverAndModifyDesertZoneAround(downstream_tile);
1190 }
1191
1192 /* If upstream is dry and flat, try making it a river tile. */
1193 if (!IsWaterTile(upstream_tile)) {
1194 /* If the tile upstream isn't flat, don't bother. */
1195 if (GetTileSlope(upstream_tile) != SLOPE_FLAT) return;
1196
1198 }
1199 }
1200
1201 /* If the tile slope matches the desired slope, add a river tile. */
1202 if (cur_slope == desired_slope) {
1204 }
1205}
1206
1214{
1215 assert(DistanceManhattan(begin, end) == 1);
1216
1217 auto [slope_end, height_end] = GetTileSlopeZ(end);
1218
1219 /* Slope either is inclined or flat; rivers don't support other slopes. */
1220 if (slope_end != SLOPE_FLAT && !IsInclinedSlope(slope_end)) return false;
1221
1222 auto [slope_begin, height_begin] = GetTileSlopeZ(begin);
1223
1224 /* It can't flow uphill. */
1225 if (height_end > height_begin) return false;
1226
1227 /* Slope continues, then it must be lower... */
1228 if (slope_end == slope_begin && height_end < height_begin) return true;
1229
1230 /* ... or either end must be flat. */
1231 return slope_end == SLOPE_FLAT || slope_begin == SLOPE_FLAT;
1232}
1233
1241static std::tuple<bool, bool> FlowRiver(TileIndex spring, TileIndex begin, uint min_river_length)
1242{
1243 uint height_begin = TileHeight(begin);
1244
1245 if (IsWaterTile(begin)) {
1246 return { DistanceManhattan(spring, begin) > min_river_length, GetTileZ(begin) == 0 };
1247 }
1248
1249 FlatSet<TileIndex> marks;
1250 marks.insert(begin);
1251
1252 /* Breadth first search for the closest tile we can flow down to. */
1253 std::list<TileIndex> queue;
1254 queue.push_back(begin);
1255
1256 bool found = false;
1257 uint count = 0; // Number of tiles considered; to be used for lake location guessing.
1258 TileIndex end;
1259 do {
1260 end = queue.front();
1261 queue.pop_front();
1262
1263 uint height_end = TileHeight(end);
1264 if (IsTileFlat(end) && (height_end < height_begin || (height_end == height_begin && IsWaterTile(end)))) {
1265 found = true;
1266 break;
1267 }
1268
1269 for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
1270 TileIndex t = end + TileOffsByDiagDir(d);
1271 if (IsValidTile(t) && !marks.contains(t) && RiverFlowsDown(end, t)) {
1272 marks.insert(t);
1273 count++;
1274 queue.push_back(t);
1275 }
1276 }
1277 } while (!queue.empty());
1278
1279 bool main_river = false;
1280 if (found) {
1281 /* Flow further down hill. */
1282 std::tie(found, main_river) = FlowRiver(spring, end, min_river_length);
1283 } else if (count > 32) {
1284 /* Maybe we can make a lake. Find the Nth of the considered tiles. */
1285 auto cit = marks.cbegin();
1286 std::advance(cit, RandomRange(count - 1));
1287 TileIndex lake_centre = *cit;
1288
1289 if (IsValidTile(lake_centre) &&
1290 /* A river, or lake, can only be built on flat slopes. */
1291 IsTileFlat(lake_centre) &&
1292 /* We want the lake to be built at the height of the river. */
1293 TileHeight(begin) == TileHeight(lake_centre) &&
1294 /* We don't want the lake at the entry of the valley. */
1295 lake_centre != begin &&
1296 /* We don't want lakes in the desert. */
1297 (_settings_game.game_creation.landscape != LandscapeType::Tropic || GetTropicZone(lake_centre) != TROPICZONE_DESERT) &&
1298 /* We only want a lake if the river is long enough. */
1299 DistanceManhattan(spring, lake_centre) > min_river_length) {
1300 end = lake_centre;
1302 uint diameter = RandomRange(8) + 3;
1303
1304 /* Run the loop twice, so artefacts from going circular in one direction get (mostly) hidden. */
1305 for (uint loops = 0; loops < 2; ++loops) {
1306 for (auto tile : SpiralTileSequence(lake_centre, diameter)) {
1307 MakeLake(tile, height_begin);
1308 }
1309 }
1310
1311 found = true;
1312 }
1313 }
1314
1315 marks.clear();
1316 if (found) YapfBuildRiver(begin, end, spring, main_river);
1317 return { found, main_river };
1318}
1319
1323static void CreateRivers()
1324{
1326 if (amount == 0) return;
1327
1329 const uint num_short_rivers = wells - std::max(1u, wells / 10);
1330 SetGeneratingWorldProgress(GWP_RIVER, wells + TILE_UPDATE_FREQUENCY / 64); // Include the tile loop calls below.
1331
1332 /* Try to create long rivers. */
1333 for (; wells > num_short_rivers; wells--) {
1335 bool done = false;
1336 for (int tries = 0; tries < 512; tries++) {
1337 for (auto t : SpiralTileSequence(RandomTile(), 8)) {
1338 if (FindSpring(t)) {
1339 done = std::get<0>(FlowRiver(t, t, _settings_game.game_creation.min_river_length * 4));
1340 break;
1341 }
1342 }
1343 if (done) break;
1344 }
1345 }
1346
1347 /* Try to create short rivers. */
1348 for (; wells != 0; wells--) {
1350 bool done = false;
1351 for (int tries = 0; tries < 128; tries++) {
1352 for (auto t : SpiralTileSequence(RandomTile(), 8)) {
1353 if (FindSpring(t)) {
1354 done = std::get<0>(FlowRiver(t, t, _settings_game.game_creation.min_river_length));
1355 break;
1356 }
1357 }
1358 if (done) break;
1359 }
1360 }
1361
1362 /* Widening rivers may have left some tiles requiring to be watered. */
1363 ConvertGroundTilesIntoWaterTiles();
1364
1365 /* Run tile loop to update the ground density. */
1366 for (uint i = 0; i != TILE_UPDATE_FREQUENCY; i++) {
1368 RunTileLoop();
1369 }
1370}
1371
1389static uint CalculateCoverageLine(uint coverage, uint edge_multiplier)
1390{
1391 /* Histogram of how many tiles per height level exist. */
1392 std::array<int, MAX_TILE_HEIGHT + 1> histogram = {};
1393 /* Histogram of how many neighbour tiles are lower than the tiles of the height level. */
1394 std::array<int, MAX_TILE_HEIGHT + 1> edge_histogram = {};
1395
1396 /* Build a histogram of the map height. */
1397 for (const auto tile : Map::Iterate()) {
1398 uint h = TileHeight(tile);
1399 histogram[h]++;
1400
1401 if (edge_multiplier != 0) {
1402 /* Check if any of our neighbours is below us. */
1403 for (DiagDirection dir = DIAGDIR_BEGIN; dir != DIAGDIR_END; dir++) {
1404 TileIndex neighbour_tile = AddTileIndexDiffCWrap(tile, TileIndexDiffCByDiagDir(dir));
1405 if (IsValidTile(neighbour_tile) && TileHeight(neighbour_tile) < h) {
1406 edge_histogram[h]++;
1407 }
1408 }
1409 }
1410 }
1411
1412 /* The amount of land we have is the map size minus the first (sea) layer. */
1413 uint land_tiles = Map::Size() - histogram[0];
1414 int best_score = land_tiles;
1415
1416 /* Our goal is the coverage amount of the land-mass. */
1417 int goal_tiles = land_tiles * coverage / 100;
1418
1419 /* We scan from top to bottom. */
1420 uint h = MAX_TILE_HEIGHT;
1421 uint best_h = h;
1422
1423 int current_tiles = 0;
1424 for (; h > 0; h--) {
1425 current_tiles += histogram[h];
1426 int current_score = goal_tiles - current_tiles;
1427
1428 /* Tropic grows from water and mountains into the desert. This is a
1429 * great visual, but it also means we* need to take into account how
1430 * much less desert tiles are being created if we are on this
1431 * height-level. We estimate this based on how many neighbouring
1432 * tiles are below us for a given length, assuming that is where
1433 * tropic is growing from.
1434 */
1435 if (edge_multiplier != 0 && h > 1) {
1436 /* From water tropic tiles grow for a few tiles land inward. */
1437 current_score -= edge_histogram[1] * edge_multiplier;
1438 /* Tropic tiles grow into the desert for a few tiles. */
1439 current_score -= edge_histogram[h] * edge_multiplier;
1440 }
1441
1442 if (std::abs(current_score) < std::abs(best_score)) {
1443 best_score = current_score;
1444 best_h = h;
1445 }
1446
1447 /* Always scan all height-levels, as h == 1 might give a better
1448 * score than any before. This is true for example with 0% desert
1449 * coverage. */
1450 }
1451
1452 return best_h;
1453}
1454
1459{
1460 /* We do not have snow sprites on coastal tiles, so never allow "1" as height. */
1462}
1463
1468static uint8_t CalculateDesertLine()
1469{
1470 /* CalculateCoverageLine() runs from top to bottom, so we need to invert the coverage. */
1472}
1473
1474bool GenerateLandscape(uint8_t mode)
1475{
1476 /* Number of steps of landscape generation */
1477 static constexpr uint GLS_HEIGHTMAP = 3;
1478 static constexpr uint GLS_TERRAGENESIS = 4;
1479 static constexpr uint GLS_ORIGINAL = 2;
1480 static constexpr uint GLS_TROPIC = 12;
1481 static constexpr uint GLS_OTHER = 0;
1482 uint steps = (_settings_game.game_creation.landscape == LandscapeType::Tropic) ? GLS_TROPIC : GLS_OTHER;
1483
1484 if (mode == GWM_HEIGHTMAP) {
1485 SetGeneratingWorldProgress(GWP_LANDSCAPE, steps + GLS_HEIGHTMAP);
1487 return false;
1488 }
1491 SetGeneratingWorldProgress(GWP_LANDSCAPE, steps + GLS_TERRAGENESIS);
1493 } else {
1494 SetGeneratingWorldProgress(GWP_LANDSCAPE, steps + GLS_ORIGINAL);
1496 for (uint x = 0; x < Map::SizeX(); x++) MakeVoid(TileXY(x, 0));
1497 for (uint y = 0; y < Map::SizeY(); y++) MakeVoid(TileXY(0, y));
1498 }
1500 case LandscapeType::Arctic: {
1501 uint32_t r = Random();
1502
1503 for (uint i = Map::ScaleBySize(GB(r, 0, 7) + 950); i != 0; --i) {
1504 GenerateTerrain(2, 0);
1505 }
1506
1507 uint flag = GB(r, 7, 2) | 4;
1508 for (uint i = Map::ScaleBySize(GB(r, 9, 7) + 450); i != 0; --i) {
1509 GenerateTerrain(4, flag);
1510 }
1511 break;
1512 }
1513
1514 case LandscapeType::Tropic: {
1515 uint32_t r = Random();
1516
1517 for (uint i = Map::ScaleBySize(GB(r, 0, 7) + 170); i != 0; --i) {
1518 GenerateTerrain(0, 0);
1519 }
1520
1521 uint flag = GB(r, 7, 2) | 4;
1522 for (uint i = Map::ScaleBySize(GB(r, 9, 8) + 1700); i != 0; --i) {
1523 GenerateTerrain(0, flag);
1524 }
1525
1526 flag ^= 2;
1527
1528 for (uint i = Map::ScaleBySize(GB(r, 17, 7) + 410); i != 0; --i) {
1529 GenerateTerrain(3, flag);
1530 }
1531 break;
1532 }
1533
1534 default: {
1535 uint32_t r = Random();
1536
1538 uint i = Map::ScaleBySize(GB(r, 0, 7) + (3 - _settings_game.difficulty.quantity_sea_lakes) * 256 + 100);
1539 for (; i != 0; --i) {
1540 /* Make sure we do not overflow. */
1541 GenerateTerrain(Clamp(_settings_game.difficulty.terrain_type, 0, 3), 0);
1542 }
1543 break;
1544 }
1545 }
1546 }
1547
1548 /* Do not call IncreaseGeneratingWorldProgress() before FixSlopes(),
1549 * it allows screen redraw. Drawing of broken slopes crashes the game */
1550 FixSlopes();
1553
1554 ConvertGroundTilesIntoWaterTiles();
1557
1559 case LandscapeType::Arctic:
1561 break;
1562
1563 case LandscapeType::Tropic: {
1564 uint desert_tropic_line = CalculateDesertLine();
1565 CreateDesertOrRainForest(desert_tropic_line);
1566 break;
1567 }
1568
1569 default:
1570 break;
1571 }
1572
1573 CreateRivers();
1574 return true;
1575}
1576
1577void OnTick_Town();
1578void OnTick_Trees();
1579void OnTick_Station();
1580void OnTick_Industry();
1581
1582void OnTick_Companies();
1583void OnTick_LinkGraph();
1584
1585void CallLandscapeTick()
1586{
1587 {
1589
1590 OnTick_Town();
1591 OnTick_Trees();
1592 OnTick_Station();
1593 OnTick_Industry();
1594 }
1595
1598}
void DeleteAnimatedTile(TileIndex tile, bool immediate)
Stops animation on the given tile.
Tile animation!
debug_inline static constexpr uint GB(const T x, const uint8_t s, const uint8_t n)
Fetch n bits from x, started at bit s.
void ClearBridgeMiddle(Tile t)
Removes bridges from the given, that is bridges along the X and Y axis.
Definition bridge_map.h:103
constexpr bool Test(Tvalue_type value) const
Test if the value-th bit is set.
constexpr bool None() const
Test if none of the values are set.
constexpr Timpl & Reset()
Reset all bits.
constexpr Timpl & Set()
Set all bits.
constexpr bool Any(const Timpl &other) const
Test if any of the given values are set.
Common return value for all commands.
void AddCost(const Money &cost)
Adds the given cost to the cost of the command.
Money GetCost() const
The costs as made up to this moment.
bool Failed() const
Did this command fail?
Enum-as-bit-set wrapper.
Flat set implementation that uses a sorted vector for storage.
bool contains(const Tkey &key) const
Test if a key exists in the set.
std::pair< const_iterator, bool > insert(const Tkey &key)
Insert a key into the set, if it does not already exist.
RAII class for measuring multi-step elements of performance.
Generate TileIndices around a center tile or tile area, with increasing distance.
static std::unique_ptr< TileIterator > Create(TileIndex corner1, TileIndex corner2, bool diagonal)
Create either an OrthogonalTileIterator or DiagonalTileIterator given the diagonal parameter.
Definition tilearea.cpp:291
static YearMonthDay ConvertDateToYMD(Date date)
Converts a Date to a Year, Month & Day.
static Date date
Current date in days (day counter).
static TickCounter counter
Monotonic counter, in ticks, since start of game.
Map accessors for 'clear' tiles.
bool IsClearGround(Tile t, ClearGround ct)
Set the type of clear tile.
Definition clear_map.h:59
@ CLEAR_GRASS
0-3
Definition clear_map.h:20
@ CLEAR_DESERT
1,3
Definition clear_map.h:25
void MakeClear(Tile t, ClearGround g, uint density)
Make a clear tile.
Definition clear_map.h:247
Functions related to commands.
static const CommandCost CMD_ERROR
Define a default return value for a failed command.
@ Execute
execute the given command
@ Bankrupt
company bankrupts, skip money check, skip vehicle on tile check in some cases
@ NoWater
don't allow building on water
@ Auto
don't allow building on structures
@ ForceClearTile
do not only remove the object on the tile, but also clear any water left on it
Money GetAvailableMoneyForCommand()
This functions returns the money which can be used to execute a command.
CompanyID _current_company
Company currently doing an action.
Functions related to companies.
void DirtyCompanyInfrastructureWindows(CompanyID company)
Redraw all windows with company infrastructure counts.
GUI Functions related to companies.
DiagDirection ReverseDiagDir(DiagDirection d)
Returns the reverse direction of the given DiagDirection.
DiagDirection ChangeDiagDir(DiagDirection d, DiagDirDiff delta)
Applies a difference on a DiagDirection.
Axis DiagDirToAxis(DiagDirection d)
Convert a DiagDirection to the axis.
DiagDirDiff
Enumeration for the difference between to DiagDirection.
@ DIAGDIRDIFF_END
Used for iterations.
@ DIAGDIRDIFF_90RIGHT
90 degrees right
@ DIAGDIRDIFF_90LEFT
90 degrees left
@ DIAGDIRDIFF_REVERSE
Reverse directions.
@ DIAGDIRDIFF_SAME
Same directions.
@ DIAGDIRDIFF_BEGIN
Used for iterations.
@ AXIS_Y
The y axis.
DiagDirection
Enumeration for diagonal directions.
@ DIAGDIR_NE
Northeast, upper right on your monitor.
@ DIAGDIR_NW
Northwest.
@ DIAGDIR_SE
Southeast.
@ DIAGDIR_END
Used for iterations.
@ DIAGDIR_BEGIN
Used for iterations.
@ DIAGDIR_SW
Southwest.
@ EXPENSES_CONSTRUCTION
Construction costs.
EffectVehicle * CreateEffectVehicleAbove(int x, int y, int z, EffectVehicleType type)
Create an effect vehicle above a particular location.
Functions related to effect vehicles.
@ EV_EXPLOSION_SMALL
Various explosions.
@ EV_EXPLOSION_LARGE
Various explosions.
Error reporting related functions.
Declarations for savegames operations.
Flat set container implementation.
Types for recording game performance data.
@ PFE_GL_LANDSCAPE
Time spent processing other world features.
Table used to generate deserts and/or rainforests.
bool _generating_world
Whether we are generating the map or not.
Definition genworld.cpp:74
Functions related to world/map generation.
void IncreaseGeneratingWorldProgress(GenWorldProgress cls)
Increases the current stage of the world generation with one.
@ LG_TERRAGENESIS
TerraGenesis Perlin landscape generator.
Definition genworld.h:22
static const uint CUSTOM_SEA_LEVEL_NUMBER_DIFFICULTY
Value for custom sea level in difficulty settings.
Definition genworld.h:48
@ GWP_LANDSCAPE
Create the landscape.
Definition genworld.h:63
@ GWP_RIVER
Create the rivers.
Definition genworld.h:64
void SetGeneratingWorldProgress(GenWorldProgress cls, uint total)
Set the total of a stage of the world generation.
@ GWM_HEIGHTMAP
Generate a newgame from a heightmap.
Definition genworld.h:32
PauseModes _pause_mode
The current pause mode.
Definition gfx.cpp:51
uint32_t SpriteID
The number of a sprite, without mapping bits and colourtables.
Definition gfx_type.h:17
@ MapGen
Special sprite for the map generator.
uint8_t LowestSnowLine()
Get the lowest possible snow line height, either variable or static.
uint8_t GetSnowLine()
Get the current snow line, either variable or static.
bool IsSnowLineSet()
Has a snow line table already been loaded.
void ClearSnowLine()
Clear the variable snow line table and free the memory.
static std::unique_ptr< SnowLine > _snow_line
Description of the snow line throughout the year.
Definition landscape.cpp:97
void SetSnowLine(std::unique_ptr< SnowLine > &&snow_line)
Set a variable snow line, as loaded from a newgrf file.
uint8_t HighestSnowLine()
Get the highest possible snow line height, either variable or static.
void MarkWholeScreenDirty()
This function mark the whole screen as dirty.
Definition gfx.cpp:1547
void MarkTileDirtyByTile(TileIndex tile, int bridge_level_offset, int tile_height_override)
Mark a tile given by its index dirty for repaint.
bool LoadHeightmap(DetailedFileType dft, std::string_view filename)
Load a heightmap from file and change the map in its current dimensions to a landscape representing t...
void FixSlopes()
This function takes care of the fact that land in OpenTTD can never differ more than 1 in height.
Functions related to creating heightmaps from files.
static void MakeLake(TileIndex tile, uint height_lake)
Make a connected lake; fill all tiles in the circular tile search that are connected.
uint GetPartialPixelZ(int x, int y, Slope corners)
Determines height at given coordinate of a slope.
static std::tuple< bool, bool > FlowRiver(TileIndex spring, TileIndex begin, uint min_river_length)
Try to flow the river down from a given begin.
int GetSlopePixelZOutsideMap(int x, int y)
Return world z coordinate of a given point of a tile, also for tiles outside the map (virtual "black"...
TrackStatus GetTileTrackStatus(TileIndex tile, TransportType mode, uint sub_mode, DiagDirection side)
Returns information about trackdirs and signal states.
void OnTick_Companies()
Called every tick for updating some company info.
static uint CalculateCoverageLine(uint coverage, uint edge_multiplier)
Calculate what height would be needed to cover N% of the landmass.
static void CalculateSnowLine()
Calculate the line from which snow begins.
static const uint TILE_UPDATE_FREQUENCY_LOG
The logarithm of how many ticks it takes between tile updates (log base 2).
Definition landscape.cpp:86
void ChangeTileOwner(TileIndex tile, Owner old_owner, Owner new_owner)
Change the owner of a tile.
void RunTileLoop()
Gradually iterate over all tiles on the map, calling their TileLoopProcs once every TILE_UPDATE_FREQU...
static bool FindSpring(TileIndex tile)
Find the spring of a river.
bool RiverFlowsDown(TileIndex begin, TileIndex end)
Check whether a river at begin could (logically) flow down to end.
static void CreateRivers()
Actually (try to) create some rivers.
void DrawFoundation(TileInfo *ti, Foundation f)
Draw foundation f at tile ti.
int GetSlopeZInCorner(Slope tileh, Corner corner)
Determine the Z height of a corner relative to TileZ.
std::tuple< Slope, int > GetFoundationSlope(TileIndex tile)
Get slope of a tile on top of a (possible) foundation If a tile does not have a foundation,...
void GetSlopePixelZOnEdge(Slope tileh, DiagDirection edge, int &z1, int &z2)
Determine the Z height of the corners of a specific tile edge.
void OnTick_LinkGraph()
Spawn or join a link graph job or compress a link graph if any link graph is due to do so.
const TileTypeProcs *const _tile_type_procs[16]
Tile callback functions for each type of tile.
Definition landscape.cpp:66
Point InverseRemapCoords2(int x, int y, bool clamp_to_map, bool *clamped)
Map 2D viewport or smallmap coordinate to 3D world or tile coordinate.
const TileTypeProcs _tile_type_town_procs
Tile callback functions for a town.
Definition landscape.cpp:52
void OnTick_Town()
Iterate through all towns and call their tick handler.
Definition town_cmd.cpp:937
static uint8_t CalculateDesertLine()
Calculate the line (in height) between desert and tropic.
const uint8_t _slope_to_sprite_offset[32]
landscape slope => sprite
std::tuple< CommandCost, Money > CmdClearArea(DoCommandFlags flags, TileIndex tile, TileIndex start_tile, bool diagonal)
Clear a big piece of landscape.
const TileTypeProcs _tile_type_road_procs
Tile callback functions for road tiles.
Definition landscape.cpp:51
uint ApplyFoundationToSlope(Foundation f, Slope &s)
Applies a foundation to a slope.
bool IsMapSurroundedByWater()
Check if all tiles on the map edge should be considered water borders.
bool GenerateLandscape(uint8_t mode)
CommandCost CmdLandscapeClear(DoCommandFlags flags, TileIndex tile)
Clear a piece of landscape.
void RiverMakeWider(TileIndex tile, TileIndex origin_tile)
Widen a river by expanding into adjacent tiles via circular tile search.
static const uint TILE_UPDATE_FREQUENCY
How many ticks it takes between tile updates (has to be a power of 2).
Definition landscape.cpp:87
int GetSlopePixelZ(int x, int y, bool ground_vehicle)
Return world Z coordinate of a given point of a tile.
Functions related to OTTD's landscape.
std::tuple< Slope, int > GetFoundationPixelSlope(TileIndex tile)
Get slope of a tile on top of a (possible) foundation If a tile does not have a foundation,...
Definition landscape.h:67
uint ApplyPixelFoundationToSlope(Foundation f, Slope &s)
Applies a foundation to a slope.
Definition landscape.h:128
Point InverseRemapCoords(int x, int y)
Map 2D viewport or smallmap coordinate to 3D world or tile coordinate.
Definition landscape.h:111
Command definitions related to landscape (slopes etc.).
Types related to the landscape.
@ Random
Randomise borders.
TileIndex TileAddWrap(TileIndex tile, int addx, int addy)
This function checks if we add addx/addy to tile, if we do wrap around the edges.
Definition map.cpp:93
uint DistanceManhattan(TileIndex t0, TileIndex t1)
Gets the Manhattan distance between the two given tiles.
Definition map.cpp:142
TileIndex TileAddXY(TileIndex tile, int x, int y)
Adds a given offset to a tile.
Definition map_func.h:469
TileIndex AddTileIndexDiffCWrap(TileIndex tile, TileIndexDiffC diff)
Add a TileIndexDiffC to a TileIndex and returns the new one.
Definition map_func.h:514
static debug_inline TileIndex TileXY(uint x, uint y)
Returns the TileIndex of a coordinate.
Definition map_func.h:372
TileIndex TileAddByDiagDir(TileIndex tile, DiagDirection dir)
Adds a DiagDir to a tile.
Definition map_func.h:610
TileIndexDiff TileDiffXY(int x, int y)
Calculates an offset for the given coordinate(-offset).
Definition map_func.h:388
TileIndexDiffC TileIndexDiffCByDiagDir(DiagDirection dir)
Returns the TileIndexDiffC offset from a DiagDirection.
Definition map_func.h:482
#define RandomTile()
Get a valid random tile.
Definition map_func.h:651
static debug_inline uint TileY(TileIndex tile)
Get the Y component of a tile.
Definition map_func.h:424
static debug_inline uint TileX(TileIndex tile)
Get the X component of a tile.
Definition map_func.h:414
TileIndexDiff TileOffsByDiagDir(DiagDirection dir)
Convert a DiagDirection to a TileIndexDiff.
Definition map_func.h:569
static debug_inline TileIndex TileVirtXY(uint x, uint y)
Get a tile from the virtual XY-coordinate.
Definition map_func.h:403
static const uint MIN_MAP_SIZE_BITS
Minimal and maximal map width and height.
Definition map_type.h:37
static const uint MAX_MAP_SIZE_BITS
Maximal size of map is equal to 2 ^ MAX_MAP_SIZE_BITS.
Definition map_type.h:38
constexpr bool IsInsideBS(const T x, const size_t base, const size_t size)
Checks if a value is between a window started at some base point.
constexpr uint CeilDiv(uint a, uint b)
Computes ceil(a / b) for non-negative a and b.
constexpr T Clamp(const T a, const T min, const T max)
Clamp a value between an interval.
Definition math_func.hpp:79
Base for all objects.
ClearedObjectArea * FindClearedObject(TileIndex tile)
Find the entry in _cleared_object_areas which occupies a certain tile.
Pseudo random number generator.
uint32_t RandomRange(uint32_t limit, const std::source_location location=std::source_location::current())
Pick a random number between 0 and limit - 1, inclusive.
A number of safeguards to prevent using unsafe methods.
FileToSaveLoad _file_to_saveload
File to save or load in the openttd loop.
Definition saveload.cpp:66
Functions/types related to saving and loading games.
GameSettings _settings_game
Game settings of a running game or the scenario editor.
Definition settings.cpp:61
bool IsSpecialRailFoundation(Foundation f)
Tests if a foundation is a special rail foundation for single horizontal/vertical track.
Definition slope_func.h:345
Slope SlopeWithThreeCornersRaised(Corner corner)
Returns the slope with all except one corner raised.
Definition slope_func.h:206
Corner OppositeCorner(Corner corner)
Returns the opposite corner.
Definition slope_func.h:184
static constexpr Corner GetHalftileSlopeCorner(Slope s)
Returns the leveled halftile of a halftile slope.
Definition slope_func.h:148
static constexpr Slope RemoveHalftileSlope(Slope s)
Removes a halftile slope from a slope.
Definition slope_func.h:60
bool IsSlopeWithOneCornerRaised(Slope s)
Tests if a specific slope has exactly one corner raised.
Definition slope_func.h:88
bool IsNonContinuousFoundation(Foundation f)
Tests if a foundation is a non-continuous foundation, i.e.
Definition slope_func.h:320
Corner GetHighestSlopeCorner(Slope s)
Returns the highest corner of a slope (one corner raised or a steep slope).
Definition slope_func.h:126
Corner GetHalftileFoundationCorner(Foundation f)
Returns the halftile corner of a halftile-foundation.
Definition slope_func.h:333
bool IsLeveledFoundation(Foundation f)
Tests if the foundation is a leveled foundation.
Definition slope_func.h:298
bool IsFoundation(Foundation f)
Tests for FOUNDATION_NONE.
Definition slope_func.h:287
static constexpr bool IsSteepSlope(Slope s)
Checks if a slope is steep.
Definition slope_func.h:36
bool IsSlopeWithThreeCornersRaised(Slope s)
Tests if a specific slope has exactly three corners raised.
Definition slope_func.h:195
bool IsInclinedSlope(Slope s)
Tests if a specific slope is an inclined slope.
Definition slope_func.h:228
Slope SteepSlope(Corner corner)
Returns a specific steep slope.
Definition slope_func.h:217
Corner GetRailFoundationCorner(Foundation f)
Returns the track corner of a special rail foundation.
Definition slope_func.h:356
static constexpr bool IsHalftileSlope(Slope s)
Checks for non-continuous slope on halftile foundations.
Definition slope_func.h:47
static constexpr int GetSlopeMaxPixelZ(Slope s)
Returns the height of the highest corner of a slope relative to TileZ (= minimal height)
Definition slope_func.h:173
DiagDirection GetInclinedSlopeDirection(Slope s)
Returns the direction of an inclined slope.
Definition slope_func.h:239
static constexpr Slope HalftileSlope(Slope s, Corner corner)
Adds a halftile slope to a slope.
Definition slope_func.h:274
Slope ComplementSlope(Slope s)
Return the complement of a slope.
Definition slope_func.h:76
Slope SlopeWithOneCornerRaised(Corner corner)
Returns the slope with a specific corner raised.
Definition slope_func.h:99
bool IsInclinedFoundation(Foundation f)
Tests if the foundation is an inclined foundation.
Definition slope_func.h:309
Corner
Enumeration of tile corners.
Definition slope_type.h:22
Slope
Enumeration for the slope-type.
Definition slope_type.h:48
@ SLOPE_W
the west corner of the tile is raised
Definition slope_type.h:50
@ SLOPE_ELEVATED
bit mask containing all 'simple' slopes
Definition slope_type.h:61
@ SLOPE_NS
north and south corner are raised
Definition slope_type.h:60
@ SLOPE_E
the east corner of the tile is raised
Definition slope_type.h:52
@ SLOPE_WSE
west, south and east corner are raised
Definition slope_type.h:63
@ SLOPE_S
the south corner of the tile is raised
Definition slope_type.h:51
@ SLOPE_N
the north corner of the tile is raised
Definition slope_type.h:53
@ SLOPE_SEN
south, east and north corner are raised
Definition slope_type.h:64
@ SLOPE_ENW
east, north and west corner are raised
Definition slope_type.h:65
@ SLOPE_SW
south and west corner are raised
Definition slope_type.h:56
@ SLOPE_FLAT
a flat tile
Definition slope_type.h:49
@ SLOPE_STEEP_W
a steep slope falling to east (from west)
Definition slope_type.h:66
@ SLOPE_NE
north and east corner are raised
Definition slope_type.h:58
@ SLOPE_STEEP_E
a steep slope falling to west (from east)
Definition slope_type.h:68
@ SLOPE_SE
south and east corner are raised
Definition slope_type.h:57
@ SLOPE_NWS
north, west and south corner are raised
Definition slope_type.h:62
@ SLOPE_NW
north and west corner are raised
Definition slope_type.h:55
@ SLOPE_STEEP_N
a steep slope falling to south (from north)
Definition slope_type.h:69
@ SLOPE_STEEP_S
a steep slope falling to north (from south)
Definition slope_type.h:67
@ SLOPE_EW
east and west corner are raised
Definition slope_type.h:59
@ SLOPE_STEEP
indicates the slope is steep
Definition slope_type.h:54
Foundation
Enumeration for Foundations.
Definition slope_type.h:93
@ FOUNDATION_INCLINED_X
The tile has an along X-axis inclined foundation.
Definition slope_type.h:96
@ FOUNDATION_STEEP_BOTH
The tile has a steep slope. The lowest corner is raised by a foundation and the upper halftile is lev...
Definition slope_type.h:101
@ FOUNDATION_INCLINED_Y
The tile has an along Y-axis inclined foundation.
Definition slope_type.h:97
@ FOUNDATION_STEEP_LOWER
The tile has a steep slope. The lowest corner is raised by a foundation to allow building railroad on...
Definition slope_type.h:98
Functions to cache sprites in memory.
This file contains all sprite-related enums and defines.
static const SpriteID SPR_HALFTILE_FOUNDATION_BASE
Halftile foundations.
Definition sprites.h:212
Functions related to stations.
Definition of base types and functions in a cross-platform compatible way.
#define lengthof(array)
Return the length of an fixed size array.
Definition stdafx.h:271
Keeps track of removed objects during execution/testruns of commands.
Definition object_base.h:86
TileIndex first_tile
The first tile being cleared, which then causes the whole object to be cleared.
Definition object_base.h:87
uint32_t clear_limit
Amount of tiles we can (still) clear (times 65536).
bool freeform_edges
allow terraforming the tiles at the map edges
uint8_t map_height_limit
the maximum allowed heightlevel
T y
Y coordinate.
T x
X coordinate.
T x
X coordinate.
T z
Z coordinate.
uint8_t terrain_type
the mountainousness of the landscape
uint8_t quantity_sea_lakes
the amount of seas/lakes
FiosType ftype
File type.
Definition saveload.h:429
std::string name
Name of the file.
Definition saveload.h:430
DetailedFileType detailed
Detailed file type.
Definition fileio_type.h:65
uint8_t amount_of_rivers
the amount of rivers
uint8_t min_river_length
the minimum river length
uint8_t snow_coverage
the amount of snow coverage on the map
uint8_t desert_coverage
the amount of desert coverage on the map
LandscapeType landscape
the landscape we're currently in
uint8_t snow_line_height
the configured snow line height (deduced from "snow_coverage")
uint8_t land_generator
the landscape generator
ConstructionSettings construction
construction of things in-game
DifficultySettings difficulty
settings related to the difficulty
GameCreationSettings game_creation
settings used during the creation of a game (map)
Size related data of the map.
Definition map_func.h:206
static uint ScaleBySize(uint n)
Scales the given value by the map size, where the given value is for a 256 by 256 map.
Definition map_func.h:327
static uint SizeY()
Get the size of the map along the Y.
Definition map_func.h:278
static IterateWrapper Iterate()
Returns an iterable ensemble of all Tiles.
Definition map_func.h:362
static debug_inline uint SizeX()
Get the size of the map along the X.
Definition map_func.h:269
static debug_inline uint LogX()
Logarithm of the map size along the X side.
Definition map_func.h:250
static uint LogY()
Logarithm of the map size along the y side.
Definition map_func.h:260
static uint MaxY()
Gets the maximum Y coordinate within the map, including MP_VOID.
Definition map_func.h:305
static debug_inline uint Size()
Get the size of the map.
Definition map_func.h:287
static debug_inline uint MaxX()
Gets the maximum X coordinate within the map, including MP_VOID.
Definition map_func.h:296
static Titem * Get(auto index)
Returns Titem with given index.
static bool IsValidID(auto index)
Tests whether given index can be used to get valid (non-nullptr) Titem.
static Titem * GetIfValid(auto index)
Returns Titem with given index.
Coord3D< uint8_t > extent
Size of bounding box.
Definition sprite.h:20
Data structure describing a sprite.
uint16_t width
Width of the sprite.
uint16_t height
Height of the sprite.
std::byte data[]
Sprite data.
Tile description for the 'land area information' tool.
Definition tile_cmd.h:36
Tile information, used while rendering the tile.
Definition tile_cmd.h:30
Slope tileh
Slope of the tile.
Definition tile_cmd.h:31
TileIndex tile
Tile index.
Definition tile_cmd.h:32
Set of callback functions for performing tile operations of a given tile type.
Definition tile_cmd.h:152
GetTileDescProc * get_tile_desc_proc
Get a description of a tile (for the 'land area information' tool)
Definition tile_cmd.h:157
GetTileTrackStatusProc * get_tile_track_status_proc
Get available tracks and status of a tile.
Definition tile_cmd.h:158
Command definitions related to terraforming.
void GenerateTerrainPerlin()
The main new land generator using Perlin noise.
Definition tgp.cpp:979
Functions for the Perlin noise enhanced map generator.
bool MayAnimateTile(TileIndex tile)
Test if a tile may be animated.
Definition tile_cmd.h:197
bool IsTileFlat(TileIndex tile, int *h)
Check if a given tile is flat.
Definition tile_map.cpp:95
std::tuple< Slope, int > GetTilePixelSlopeOutsideMap(int x, int y)
Return the slope of a given tile, also for tiles outside the map (virtual "black" tiles).
Definition tile_map.cpp:78
std::tuple< Slope, int > GetTileSlopeZ(TileIndex tile)
Return the slope of a given tile inside the map.
Definition tile_map.cpp:55
int GetTileMaxZ(TileIndex t)
Get top height of the tile inside the map.
Definition tile_map.cpp:136
int GetTileZ(TileIndex tile)
Get bottom height of the tile.
Definition tile_map.cpp:116
Owner GetTileOwner(Tile tile)
Returns the owner of a tile.
Definition tile_map.h:178
static debug_inline TileType GetTileType(Tile tile)
Get the tiletype of a given tile.
Definition tile_map.h:96
bool IsValidTile(Tile tile)
Checks if a tile is valid.
Definition tile_map.h:161
TropicZone GetTropicZone(Tile tile)
Get the tropic zone.
Definition tile_map.h:238
void SetTileHeight(Tile tile, uint height)
Sets the height of a tile.
Definition tile_map.h:57
static debug_inline bool IsTileType(Tile tile, TileType type)
Checks if a tile is a given tiletype.
Definition tile_map.h:150
Slope GetTileSlope(TileIndex tile)
Return the slope of a given tile inside the map.
Definition tile_map.h:279
void SetTropicZone(Tile tile, TropicZone type)
Set the tropic zone.
Definition tile_map.h:225
static debug_inline uint TileHeight(Tile tile)
Returns the height of a tile.
Definition tile_map.h:29
static constexpr uint MAX_TILE_HEIGHT
Maximum allowed tile height.
Definition tile_type.h:24
@ TROPICZONE_RAINFOREST
Rainforest tile.
Definition tile_type.h:79
@ TROPICZONE_DESERT
Tile is desert.
Definition tile_type.h:78
@ TROPICZONE_NORMAL
Normal tropiczone.
Definition tile_type.h:77
constexpr TileIndex INVALID_TILE
The very nice invalid tile marker.
Definition tile_type.h:95
static constexpr uint TILE_SIZE
Tile size in world coordinates.
Definition tile_type.h:15
static constexpr uint TILE_PIXELS
Pixel distance between tile columns/rows in ZOOM_BASE.
Definition tile_type.h:17
static constexpr uint TILE_HEIGHT
Height of a height level in world coordinate AND in pixels in ZOOM_BASE.
Definition tile_type.h:18
@ MP_CLEAR
A tile without any structures, i.e. grass, rocks, farm fields etc.
Definition tile_type.h:48
@ MP_WATER
Water tile.
Definition tile_type.h:54
@ MP_VOID
Invisible tiles at the SW and SE border.
Definition tile_type.h:55
Definition of the game-calendar-timer.
Definition of the tick-based game-timer.
TransportType
Available types of transport.
void OffsetGroundSprite(int x, int y)
Called when a foundation has been drawn for the current tile.
Definition viewport.cpp:591
void AddSortableSpriteToDraw(SpriteID image, PaletteID pal, int x, int y, int z, const SpriteBounds &bounds, bool transparent, const SubSprite *sub)
Draw a (transparent) sprite at given coordinates with a given bounding box.
Definition viewport.cpp:663
Functions related to (drawing on) viewports.
Map accessors for void tiles.
void MakeVoid(Tile t)
Make a nice void tile ;)
Definition void_map.h:19
Functions related to water (management)
void ClearNeighbourNonFloodingStates(TileIndex tile)
Clear non-flooding state of the tiles around a tile.
Definition water_cmd.cpp:97
void MakeRiverAndModifyDesertZoneAround(TileIndex tile)
Make a river tile and remove desert directly around it.
bool IsTileOnWater(Tile t)
Tests if the tile was built on water.
Definition water_map.h:138
bool IsRiver(Tile t)
Is it a river water tile?
Definition water_map.h:182
@ WATER_CLASS_CANAL
Canal.
Definition water_map.h:41
bool HasTileWaterClass(Tile t)
Checks whether the tile has an waterclass associated.
Definition water_map.h:103
bool IsCanal(Tile t)
Is it a canal tile?
Definition water_map.h:171
WaterClass GetWaterClass(Tile t)
Get the water class at a tile.
Definition water_map.h:114
bool IsCoastTile(Tile t)
Is it a coast tile.
Definition water_map.h:213
bool IsDockingTile(Tile t)
Checks whether the tile is marked as a dockling tile.
Definition water_map.h:373
bool IsWaterTile(Tile t)
Is it a water tile with plain water?
Definition water_map.h:192
void InvalidateWaterRegion(TileIndex tile)
Marks the water region that tile is part of as invalid.
Handles dividing the water in the map into regions to assist pathfinding.
void YapfBuildRiver(TileIndex start_tile, TileIndex end_tile, TileIndex spring_tile, bool main_river)
Builds a river from the start tile to the end tile.
Pathfinder for river building.