OpenTTD Source 20241224-master-gee860a5c8e
32bpp_sse_func.hpp
Go to the documentation of this file.
1/*
2 * This file is part of OpenTTD.
3 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
4 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
5 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
6 */
7
10#ifndef BLITTER_32BPP_SSE_FUNC_HPP
11#define BLITTER_32BPP_SSE_FUNC_HPP
12
13/* ATTENTION
14 * This file is compiled multiple times with different defines for SSE_VERSION and MARGIN_NORMAL_THRESHOLD.
15 * Be careful when declaring things with external linkage.
16 * Use internal linkage instead, i.e. "static".
17 */
18#define INTERNAL_LINKAGE static
19
20#ifdef WITH_SSE
21
22GNU_TARGET(SSE_TARGET)
23INTERNAL_LINKAGE inline void InsertFirstUint32(const uint32_t value, __m128i &into)
24{
25#if (SSE_VERSION >= 4)
26 into = _mm_insert_epi32(into, value, 0);
27#else
28 into = _mm_insert_epi16(into, value, 0);
29 into = _mm_insert_epi16(into, value >> 16, 1);
30#endif
31}
32
33GNU_TARGET(SSE_TARGET)
34INTERNAL_LINKAGE inline void InsertSecondUint32(const uint32_t value, __m128i &into)
35{
36#if (SSE_VERSION >= 4)
37 into = _mm_insert_epi32(into, value, 1);
38#else
39 into = _mm_insert_epi16(into, value, 2);
40 into = _mm_insert_epi16(into, value >> 16, 3);
41#endif
42}
43
44GNU_TARGET(SSE_TARGET)
45INTERNAL_LINKAGE inline void LoadUint64(const uint64_t value, __m128i &into)
46{
47#ifdef POINTER_IS_64BIT
48 into = _mm_cvtsi64_si128(value);
49#else
50 #if (SSE_VERSION >= 4)
51 into = _mm_cvtsi32_si128(value);
52 InsertSecondUint32(value >> 32, into);
53 #else
54 (*(um128i*) &into).m128i_u64[0] = value;
55 #endif
56#endif
57}
58
59GNU_TARGET(SSE_TARGET)
60INTERNAL_LINKAGE inline __m128i PackUnsaturated(__m128i from, const __m128i &mask)
61{
62#if (SSE_VERSION == 2)
63 from = _mm_and_si128(from, mask); // PAND, wipe high bytes to keep low bytes when packing
64 return _mm_packus_epi16(from, from); // PACKUSWB, pack 2 colours (with saturation)
65#else
66 return _mm_shuffle_epi8(from, mask);
67#endif
68}
69
70GNU_TARGET(SSE_TARGET)
71INTERNAL_LINKAGE inline __m128i DistributeAlpha(const __m128i from, const __m128i &mask)
72{
73#if (SSE_VERSION == 2)
74 __m128i alphaAB = _mm_shufflelo_epi16(from, 0x3F); // PSHUFLW, put alpha1 in front of each rgb1
75 alphaAB = _mm_shufflehi_epi16(alphaAB, 0x3F); // PSHUFHW, put alpha2 in front of each rgb2
76 return _mm_andnot_si128(mask, alphaAB); // PANDN, set alpha fields to 0
77#else
78 return _mm_shuffle_epi8(from, mask);
79#endif
80}
81
82GNU_TARGET(SSE_TARGET)
83INTERNAL_LINKAGE inline __m128i AlphaBlendTwoPixels(__m128i src, __m128i dst, const __m128i &distribution_mask, const __m128i &pack_mask, const __m128i &alpha_mask)
84{
85 __m128i srcAB = _mm_unpacklo_epi8(src, _mm_setzero_si128()); // PUNPCKLBW, expand each uint8_t into uint16
86 __m128i dstAB = _mm_unpacklo_epi8(dst, _mm_setzero_si128());
87
88 __m128i alphaMaskAB = _mm_cmpgt_epi16(srcAB, _mm_setzero_si128()); // PCMPGTW (alpha > 0) ? 0xFFFF : 0
89 __m128i alphaAB = _mm_sub_epi16(srcAB, alphaMaskAB); // if (alpha > 0) a++;
90 alphaAB = DistributeAlpha(alphaAB, distribution_mask);
91
92 srcAB = _mm_sub_epi16(srcAB, dstAB); // PSUBW, (r - Cr)
93 srcAB = _mm_mullo_epi16(srcAB, alphaAB); // PMULLW, a*(r - Cr)
94 srcAB = _mm_srli_epi16(srcAB, 8); // PSRLW, a*(r - Cr)/256
95 srcAB = _mm_add_epi16(srcAB, dstAB); // PADDW, a*(r - Cr)/256 + Cr
96
97 alphaMaskAB = _mm_and_si128(alphaMaskAB, alpha_mask); // PAND, set non alpha fields to 0
98 srcAB = _mm_or_si128(srcAB, alphaMaskAB); // POR, set alpha fields to 0xFFFF is src alpha was > 0
99
100 return PackUnsaturated(srcAB, pack_mask);
101}
102
103/* Darken 2 pixels.
104 * rgb = rgb * ((256/4) * 4 - (alpha/4)) / ((256/4) * 4)
105 */
106GNU_TARGET(SSE_TARGET)
107INTERNAL_LINKAGE inline __m128i DarkenTwoPixels(__m128i src, __m128i dst, const __m128i &distribution_mask, const __m128i &tr_nom_base)
108{
109 __m128i srcAB = _mm_unpacklo_epi8(src, _mm_setzero_si128());
110 __m128i dstAB = _mm_unpacklo_epi8(dst, _mm_setzero_si128());
111 __m128i alphaAB = DistributeAlpha(srcAB, distribution_mask);
112 alphaAB = _mm_srli_epi16(alphaAB, 2); // Reduce to 64 levels of shades so the max value fits in 16 bits.
113 __m128i nom = _mm_sub_epi16(tr_nom_base, alphaAB);
114 dstAB = _mm_mullo_epi16(dstAB, nom);
115 dstAB = _mm_srli_epi16(dstAB, 8);
116 return _mm_packus_epi16(dstAB, dstAB);
117}
118
119IGNORE_UNINITIALIZED_WARNING_START
120GNU_TARGET(SSE_TARGET)
121INTERNAL_LINKAGE Colour ReallyAdjustBrightness(Colour colour, uint8_t brightness)
122{
123 uint64_t c16 = colour.b | (uint64_t) colour.g << 16 | (uint64_t) colour.r << 32;
124 c16 *= brightness;
125 uint64_t c16_ob = c16; // Helps out of order execution.
126 c16 /= Blitter_32bppBase::DEFAULT_BRIGHTNESS;
127 c16 &= 0x01FF01FF01FFULL;
128
129 /* Sum overbright (maximum for each rgb is 508, 9 bits, -255 is changed in -256 so we just have to take the 8 lower bits into account). */
130 c16_ob = (((c16_ob >> (8 + 7)) & 0x0100010001ULL) * 0xFF) & c16;
131 const uint ob = ((uint16_t) c16_ob + (uint16_t) (c16_ob >> 16) + (uint16_t) (c16_ob >> 32)) / 2;
132
133 const uint32_t alpha32 = colour.data & 0xFF000000;
134 __m128i ret;
135 LoadUint64(c16, ret);
136 if (ob != 0) {
137 __m128i ob128 = _mm_cvtsi32_si128(ob);
138 ob128 = _mm_shufflelo_epi16(ob128, 0xC0);
139 __m128i white = OVERBRIGHT_VALUE_MASK;
140 __m128i c128 = ret;
141 ret = _mm_subs_epu16(white, c128); // PSUBUSW, (255 - rgb)
142 ret = _mm_mullo_epi16(ret, ob128); // PMULLW, ob*(255 - rgb)
143 ret = _mm_srli_epi16(ret, 8); // PSRLW, ob*(255 - rgb)/256
144 ret = _mm_add_epi16(ret, c128); // PADDW, ob*(255 - rgb)/256 + rgb
145 }
146
147 ret = _mm_packus_epi16(ret, ret); // PACKUSWB, saturate and pack.
148 return alpha32 | _mm_cvtsi128_si32(ret);
149}
150IGNORE_UNINITIALIZED_WARNING_STOP
151
155INTERNAL_LINKAGE inline Colour AdjustBrightneSSE(Colour colour, uint8_t brightness)
156{
157 /* Shortcut for normal brightness. */
158 if (brightness == Blitter_32bppBase::DEFAULT_BRIGHTNESS) return colour;
159
160 return ReallyAdjustBrightness(colour, brightness);
161}
162
163GNU_TARGET(SSE_TARGET)
164INTERNAL_LINKAGE inline __m128i AdjustBrightnessOfTwoPixels([[maybe_unused]] __m128i from, [[maybe_unused]] uint32_t brightness)
165{
166#if (SSE_VERSION < 3)
167 NOT_REACHED();
168#else
169 /* The following dataflow differs from the one of AdjustBrightness() only for alpha.
170 * In order to keep alpha in colAB, insert a 1 in a unused brightness byte (a*1->a).
171 * OK, not a 1 but DEFAULT_BRIGHTNESS to compensate the div.
172 */
173 brightness &= 0xFF00FF00;
174 brightness += Blitter_32bppBase::DEFAULT_BRIGHTNESS;
175
176 __m128i colAB = _mm_unpacklo_epi8(from, _mm_setzero_si128());
177 __m128i briAB = _mm_cvtsi32_si128(brightness);
178 briAB = _mm_shuffle_epi8(briAB, BRIGHTNESS_LOW_CONTROL_MASK); // DEFAULT_BRIGHTNESS in 0, 0x00 in 2.
179 colAB = _mm_mullo_epi16(colAB, briAB);
180 __m128i colAB_ob = _mm_srli_epi16(colAB, 8 + 7);
181 colAB = _mm_srli_epi16(colAB, 7);
182
183 /* Sum overbright.
184 * Maximum for each rgb is 508 => 9 bits. The highest bit tells if there is overbright.
185 * -255 is changed in -256 so we just have to take the 8 lower bits into account.
186 */
187 colAB = _mm_and_si128(colAB, BRIGHTNESS_DIV_CLEANER);
188 colAB_ob = _mm_and_si128(colAB_ob, OVERBRIGHT_PRESENCE_MASK);
189 colAB_ob = _mm_mullo_epi16(colAB_ob, OVERBRIGHT_VALUE_MASK);
190 colAB_ob = _mm_and_si128(colAB_ob, colAB);
191 __m128i obAB = _mm_hadd_epi16(_mm_hadd_epi16(colAB_ob, _mm_setzero_si128()), _mm_setzero_si128());
192
193 obAB = _mm_srli_epi16(obAB, 1); // Reduce overbright strength.
194 obAB = _mm_shuffle_epi8(obAB, OVERBRIGHT_CONTROL_MASK);
195 __m128i retAB = OVERBRIGHT_VALUE_MASK; // ob_mask is equal to white.
196 retAB = _mm_subs_epu16(retAB, colAB); // (255 - rgb)
197 retAB = _mm_mullo_epi16(retAB, obAB); // ob*(255 - rgb)
198 retAB = _mm_srli_epi16(retAB, 8); // ob*(255 - rgb)/256
199 retAB = _mm_add_epi16(retAB, colAB); // ob*(255 - rgb)/256 + rgb
200
201 return _mm_packus_epi16(retAB, retAB);
202#endif
203}
204
205#if FULL_ANIMATION == 0
213IGNORE_UNINITIALIZED_WARNING_START
214template <BlitterMode mode, Blitter_32bppSSE2::ReadMode read_mode, Blitter_32bppSSE2::BlockType bt_last, bool translucent>
215GNU_TARGET(SSE_TARGET)
216#if (SSE_VERSION == 2)
217inline void Blitter_32bppSSE2::Draw(const Blitter::BlitterParams *bp, ZoomLevel zoom)
218#elif (SSE_VERSION == 3)
219inline void Blitter_32bppSSSE3::Draw(const Blitter::BlitterParams *bp, ZoomLevel zoom)
220#elif (SSE_VERSION == 4)
221inline void Blitter_32bppSSE4::Draw(const Blitter::BlitterParams *bp, ZoomLevel zoom)
222#endif
223{
224 const uint8_t * const remap = bp->remap;
225 Colour *dst_line = (Colour *) bp->dst + bp->top * bp->pitch + bp->left;
226 int effective_width = bp->width;
227
228 /* Find where to start reading in the source sprite. */
229 const SpriteData * const sd = (const SpriteData *) bp->sprite;
230 const SpriteInfo * const si = &sd->infos[zoom];
231 const MapValue *src_mv_line = (const MapValue *) &sd->data[si->mv_offset] + bp->skip_top * si->sprite_width;
232 const Colour *src_rgba_line = (const Colour *) ((const uint8_t *) &sd->data[si->sprite_offset] + bp->skip_top * si->sprite_line_size);
233
234 if (read_mode != RM_WITH_MARGIN) {
235 src_rgba_line += bp->skip_left;
236 src_mv_line += bp->skip_left;
237 }
238 const MapValue *src_mv = src_mv_line;
239
240 /* Load these variables into register before loop. */
241 const __m128i alpha_and = ALPHA_AND_MASK;
242 #define ALPHA_BLEND_PARAM_3 alpha_and
243#if (SSE_VERSION == 2)
244 const __m128i clear_hi = CLEAR_HIGH_BYTE_MASK;
245 #define ALPHA_BLEND_PARAM_1 alpha_and
246 #define ALPHA_BLEND_PARAM_2 clear_hi
247 #define DARKEN_PARAM_1 tr_nom_base
248 #define DARKEN_PARAM_2 tr_nom_base
249#else
250 const __m128i a_cm = ALPHA_CONTROL_MASK;
251 const __m128i pack_low_cm = PACK_LOW_CONTROL_MASK;
252 #define ALPHA_BLEND_PARAM_1 a_cm
253 #define ALPHA_BLEND_PARAM_2 pack_low_cm
254 #define DARKEN_PARAM_1 a_cm
255 #define DARKEN_PARAM_2 tr_nom_base
256#endif
257 const __m128i tr_nom_base = TRANSPARENT_NOM_BASE;
258
259 for (int y = bp->height; y != 0; y--) {
260 Colour *dst = dst_line;
261 const Colour *src = src_rgba_line + META_LENGTH;
262 if (mode == BM_COLOUR_REMAP || mode == BM_CRASH_REMAP) src_mv = src_mv_line;
263
264 if (read_mode == RM_WITH_MARGIN) {
265 assert(bt_last == BT_NONE); // or you must ensure block type is preserved
266 src += src_rgba_line[0].data;
267 dst += src_rgba_line[0].data;
268 if (mode == BM_COLOUR_REMAP || mode == BM_CRASH_REMAP) src_mv += src_rgba_line[0].data;
269 const int width_diff = si->sprite_width - bp->width;
270 effective_width = bp->width - (int) src_rgba_line[0].data;
271 const int delta_diff = (int) src_rgba_line[1].data - width_diff;
272 const int new_width = effective_width - delta_diff;
273 effective_width = delta_diff > 0 ? new_width : effective_width;
274 if (effective_width <= 0) goto next_line;
275 }
276
277 switch (mode) {
278 default:
279 if (!translucent) {
280 for (uint x = (uint) effective_width; x > 0; x--) {
281 if (src->a) *dst = *src;
282 src++;
283 dst++;
284 }
285 break;
286 }
287
288 for (uint x = (uint) effective_width / 2; x > 0; x--) {
289 __m128i srcABCD = _mm_loadl_epi64((const __m128i*) src);
290 __m128i dstABCD = _mm_loadl_epi64((__m128i*) dst);
291 _mm_storel_epi64((__m128i*) dst, AlphaBlendTwoPixels(srcABCD, dstABCD, ALPHA_BLEND_PARAM_1, ALPHA_BLEND_PARAM_2, ALPHA_BLEND_PARAM_3));
292 src += 2;
293 dst += 2;
294 }
295
296 if ((bt_last == BT_NONE && effective_width & 1) || bt_last == BT_ODD) {
297 __m128i srcABCD = _mm_cvtsi32_si128(src->data);
298 __m128i dstABCD = _mm_cvtsi32_si128(dst->data);
299 dst->data = _mm_cvtsi128_si32(AlphaBlendTwoPixels(srcABCD, dstABCD, ALPHA_BLEND_PARAM_1, ALPHA_BLEND_PARAM_2, ALPHA_BLEND_PARAM_3));
300 }
301 break;
302
303 case BM_COLOUR_REMAP:
304#if (SSE_VERSION >= 3)
305 for (uint x = (uint) effective_width / 2; x > 0; x--) {
306 __m128i srcABCD = _mm_loadl_epi64((const __m128i*) src);
307 __m128i dstABCD = _mm_loadl_epi64((__m128i*) dst);
308 uint32_t mvX2 = *((uint32_t *) const_cast<MapValue *>(src_mv));
309
310 /* Remap colours. */
311 if (mvX2 & 0x00FF00FF) {
312 #define CMOV_REMAP(m_colour, m_colour_init, m_src, m_m) \
313 /* Written so the compiler uses CMOV. */ \
314 Colour m_colour = m_colour_init; \
315 { \
316 const Colour srcm = (Colour) (m_src); \
317 const uint m = (uint8_t) (m_m); \
318 const uint r = remap[m]; \
319 const Colour cmap = (this->LookupColourInPalette(r).data & 0x00FFFFFF) | (srcm.data & 0xFF000000); \
320 m_colour = r == 0 ? m_colour : cmap; \
321 m_colour = m != 0 ? m_colour : srcm; \
322 }
323#ifdef POINTER_IS_64BIT
324 uint64_t srcs = _mm_cvtsi128_si64(srcABCD);
325 uint64_t remapped_src = 0;
326 CMOV_REMAP(c0, 0, srcs, mvX2);
327 remapped_src = c0.data;
328 CMOV_REMAP(c1, 0, srcs >> 32, mvX2 >> 16);
329 remapped_src |= (uint64_t) c1.data << 32;
330 srcABCD = _mm_cvtsi64_si128(remapped_src);
331#else
332 Colour remapped_src[2];
333 CMOV_REMAP(c0, 0, _mm_cvtsi128_si32(srcABCD), mvX2);
334 remapped_src[0] = c0.data;
335 CMOV_REMAP(c1, 0, src[1], mvX2 >> 16);
336 remapped_src[1] = c1.data;
337 srcABCD = _mm_loadl_epi64((__m128i*) &remapped_src);
338#endif
339
340 if ((mvX2 & 0xFF00FF00) != 0x80008000) srcABCD = AdjustBrightnessOfTwoPixels(srcABCD, mvX2);
341 }
342
343 /* Blend colours. */
344 _mm_storel_epi64((__m128i *) dst, AlphaBlendTwoPixels(srcABCD, dstABCD, ALPHA_BLEND_PARAM_1, ALPHA_BLEND_PARAM_2, ALPHA_BLEND_PARAM_3));
345 dst += 2;
346 src += 2;
347 src_mv += 2;
348 }
349
350 if ((bt_last == BT_NONE && effective_width & 1) || bt_last == BT_ODD) {
351#else
352 for (uint x = (uint) effective_width; x > 0; x--) {
353#endif
354 /* In case the m-channel is zero, do not remap this pixel in any way. */
355 __m128i srcABCD;
356 if (src_mv->m) {
357 const uint r = remap[src_mv->m];
358 if (r != 0) {
359 Colour remapped_colour = AdjustBrightneSSE(this->LookupColourInPalette(r), src_mv->v);
360 if (src->a == 255) {
361 *dst = remapped_colour;
362 } else {
363 remapped_colour.a = src->a;
364 srcABCD = _mm_cvtsi32_si128(remapped_colour.data);
365 goto bmcr_alpha_blend_single;
366 }
367 }
368 } else {
369 srcABCD = _mm_cvtsi32_si128(src->data);
370 if (src->a < 255) {
371bmcr_alpha_blend_single:
372 __m128i dstABCD = _mm_cvtsi32_si128(dst->data);
373 srcABCD = AlphaBlendTwoPixels(srcABCD, dstABCD, ALPHA_BLEND_PARAM_1, ALPHA_BLEND_PARAM_2, ALPHA_BLEND_PARAM_3);
374 }
375 dst->data = _mm_cvtsi128_si32(srcABCD);
376 }
377#if (SSE_VERSION == 2)
378 src_mv++;
379 dst++;
380 src++;
381#endif
382 }
383 break;
384
385 case BM_TRANSPARENT:
386 /* Make the current colour a bit more black, so it looks like this image is transparent. */
387 for (uint x = (uint) bp->width / 2; x > 0; x--) {
388 __m128i srcABCD = _mm_loadl_epi64((const __m128i*) src);
389 __m128i dstABCD = _mm_loadl_epi64((__m128i*) dst);
390 _mm_storel_epi64((__m128i *) dst, DarkenTwoPixels(srcABCD, dstABCD, DARKEN_PARAM_1, DARKEN_PARAM_2));
391 src += 2;
392 dst += 2;
393 }
394
395 if ((bt_last == BT_NONE && bp->width & 1) || bt_last == BT_ODD) {
396 __m128i srcABCD = _mm_cvtsi32_si128(src->data);
397 __m128i dstABCD = _mm_cvtsi32_si128(dst->data);
398 dst->data = _mm_cvtsi128_si32(DarkenTwoPixels(srcABCD, dstABCD, DARKEN_PARAM_1, DARKEN_PARAM_2));
399 }
400 break;
401
403 /* Apply custom transparency remap. */
404 for (uint x = (uint) bp->width; x > 0; x--) {
405 if (src->a != 0) {
406 *dst = this->LookupColourInPalette(remap[GetNearestColourIndex(*dst)]);
407 }
408 src_mv++;
409 dst++;
410 src++;
411 }
412 break;
413
414 case BM_CRASH_REMAP:
415 for (uint x = (uint) bp->width; x > 0; x--) {
416 if (src_mv->m == 0) {
417 if (src->a != 0) {
418 uint8_t g = MakeDark(src->r, src->g, src->b);
419 *dst = ComposeColourRGBA(g, g, g, src->a, *dst);
420 }
421 } else {
422 uint r = remap[src_mv->m];
423 if (r != 0) *dst = ComposeColourPANoCheck(this->AdjustBrightness(this->LookupColourInPalette(r), src_mv->v), src->a, *dst);
424 }
425 src_mv++;
426 dst++;
427 src++;
428 }
429 break;
430
431 case BM_BLACK_REMAP:
432 for (uint x = (uint) bp->width; x > 0; x--) {
433 if (src->a != 0) {
434 *dst = Colour(0, 0, 0);
435 }
436 src_mv++;
437 dst++;
438 src++;
439 }
440 break;
441 }
442
443next_line:
444 if (mode == BM_COLOUR_REMAP || mode == BM_CRASH_REMAP) src_mv_line += si->sprite_width;
445 src_rgba_line = (const Colour*) ((const uint8_t*) src_rgba_line + si->sprite_line_size);
446 dst_line += bp->pitch;
447 }
448}
449IGNORE_UNINITIALIZED_WARNING_STOP
450
458#if (SSE_VERSION == 2)
459void Blitter_32bppSSE2::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom)
460#elif (SSE_VERSION == 3)
461void Blitter_32bppSSSE3::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom)
462#elif (SSE_VERSION == 4)
463void Blitter_32bppSSE4::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom)
464#endif
465{
466 switch (mode) {
467 default: {
468 if (bp->skip_left != 0 || bp->width <= MARGIN_NORMAL_THRESHOLD) {
469bm_normal:
470 const BlockType bt_last = (BlockType) (bp->width & 1);
471 switch (bt_last) {
472 default: Draw<BM_NORMAL, RM_WITH_SKIP, BT_EVEN, true>(bp, zoom); return;
473 case BT_ODD: Draw<BM_NORMAL, RM_WITH_SKIP, BT_ODD, true>(bp, zoom); return;
474 }
475 } else {
476 if (((const Blitter_32bppSSE_Base::SpriteData *) bp->sprite)->flags & SF_TRANSLUCENT) {
477 Draw<BM_NORMAL, RM_WITH_MARGIN, BT_NONE, true>(bp, zoom);
478 } else {
479 Draw<BM_NORMAL, RM_WITH_MARGIN, BT_NONE, false>(bp, zoom);
480 }
481 return;
482 }
483 break;
484 }
485 case BM_COLOUR_REMAP:
486 if (((const Blitter_32bppSSE_Base::SpriteData *) bp->sprite)->flags & SF_NO_REMAP) goto bm_normal;
487 if (bp->skip_left != 0 || bp->width <= MARGIN_REMAP_THRESHOLD) {
488 Draw<BM_COLOUR_REMAP, RM_WITH_SKIP, BT_NONE, true>(bp, zoom); return;
489 } else {
490 Draw<BM_COLOUR_REMAP, RM_WITH_MARGIN, BT_NONE, true>(bp, zoom); return;
491 }
492 case BM_TRANSPARENT: Draw<BM_TRANSPARENT, RM_NONE, BT_NONE, true>(bp, zoom); return;
493 case BM_TRANSPARENT_REMAP: Draw<BM_TRANSPARENT_REMAP, RM_NONE, BT_NONE, true>(bp, zoom); return;
494 case BM_CRASH_REMAP: Draw<BM_CRASH_REMAP, RM_NONE, BT_NONE, true>(bp, zoom); return;
495 case BM_BLACK_REMAP: Draw<BM_BLACK_REMAP, RM_NONE, BT_NONE, true>(bp, zoom); return;
496 }
497}
498#endif /* FULL_ANIMATION */
499
500#endif /* WITH_SSE */
501#endif /* BLITTER_32BPP_SSE_FUNC_HPP */
BlitterMode
The modes of blitting we can do.
Definition base.hpp:17
@ BM_BLACK_REMAP
Perform remapping to a completely blackened sprite.
Definition base.hpp:23
@ BM_COLOUR_REMAP
Perform a colour remapping.
Definition base.hpp:19
@ BM_TRANSPARENT_REMAP
Perform transparency colour remapping.
Definition base.hpp:21
@ BM_TRANSPARENT
Perform transparency darkening remapping.
Definition base.hpp:20
@ BM_CRASH_REMAP
Perform a crash remapping.
Definition base.hpp:22
uint8_t GetNearestColourIndex(uint8_t r, uint8_t g, uint8_t b)
Get nearest colour palette index from an RGB colour.
Definition palette.cpp:127
Parameters related to blitting.
Definition base.hpp:32
int skip_top
How much pixels of the source to skip on the top (based on zoom of dst)
Definition base.hpp:37
void * dst
Destination buffer.
Definition base.hpp:45
int left
The left offset in the 'dst' in pixels to start drawing.
Definition base.hpp:42
int pitch
The pitch of the destination buffer.
Definition base.hpp:46
int skip_left
How much pixels of the source to skip on the left (based on zoom of dst)
Definition base.hpp:36
int height
The height in pixels that needs to be drawn to dst.
Definition base.hpp:39
const uint8_t * remap
XXX – Temporary storage for remap array.
Definition base.hpp:34
int width
The width in pixels that needs to be drawn to dst.
Definition base.hpp:38
const void * sprite
Pointer to the sprite how ever the encoder stored it.
Definition base.hpp:33
int top
The top offset in the 'dst' in pixels to start drawing.
Definition base.hpp:43
Structure to access the alpha, red, green, and blue channels from a 32 bit number.
Definition gfx_type.h:165
uint32_t data
Conversion of the channel information to a 32 bit number.
Definition gfx_type.h:166
uint8_t b
colour channels in BE order
Definition gfx_type.h:171
ZoomLevel
All zoom levels we know.
Definition zoom_type.h:16