OpenTTD
newgrf_engine.cpp
Go to the documentation of this file.
1 /* $Id: newgrf_engine.cpp 27984 2018-03-11 13:19:41Z frosch $ */
2 
3 /*
4  * This file is part of OpenTTD.
5  * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
6  * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
7  * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
8  */
9 
12 #include "stdafx.h"
13 #include "debug.h"
14 #include "train.h"
15 #include "roadveh.h"
16 #include "company_func.h"
17 #include "newgrf_cargo.h"
18 #include "newgrf_spritegroup.h"
19 #include "date_func.h"
20 #include "vehicle_func.h"
21 #include "core/random_func.hpp"
22 #include "aircraft.h"
23 #include "station_base.h"
24 #include "company_base.h"
25 #include "newgrf_railtype.h"
26 #include "ship.h"
27 
28 #include "safeguards.h"
29 
30 struct WagonOverride {
31  EngineID *train_id;
32  uint trains;
33  CargoID cargo;
34  const SpriteGroup *group;
35 };
36 
37 void SetWagonOverrideSprites(EngineID engine, CargoID cargo, const SpriteGroup *group, EngineID *train_id, uint trains)
38 {
39  Engine *e = Engine::Get(engine);
40  WagonOverride *wo;
41 
42  assert(cargo < NUM_CARGO + 2); // Include CT_DEFAULT and CT_PURCHASE pseudo cargoes.
43 
44  e->overrides_count++;
45  e->overrides = ReallocT(e->overrides, e->overrides_count);
46 
47  wo = &e->overrides[e->overrides_count - 1];
48  wo->group = group;
49  wo->cargo = cargo;
50  wo->trains = trains;
51  wo->train_id = MallocT<EngineID>(trains);
52  memcpy(wo->train_id, train_id, trains * sizeof *train_id);
53 }
54 
55 const SpriteGroup *GetWagonOverrideSpriteSet(EngineID engine, CargoID cargo, EngineID overriding_engine)
56 {
57  const Engine *e = Engine::Get(engine);
58 
59  for (uint i = 0; i < e->overrides_count; i++) {
60  const WagonOverride *wo = &e->overrides[i];
61 
62  if (wo->cargo != cargo && wo->cargo != CT_DEFAULT) continue;
63 
64  for (uint j = 0; j < wo->trains; j++) {
65  if (wo->train_id[j] == overriding_engine) return wo->group;
66  }
67  }
68  return NULL;
69 }
70 
75 {
76  for (uint i = 0; i < e->overrides_count; i++) {
77  WagonOverride *wo = &e->overrides[i];
78  free(wo->train_id);
79  }
80  free(e->overrides);
81  e->overrides_count = 0;
82  e->overrides = NULL;
83 }
84 
85 
86 void SetCustomEngineSprites(EngineID engine, byte cargo, const SpriteGroup *group)
87 {
88  Engine *e = Engine::Get(engine);
89  assert(cargo < lengthof(e->grf_prop.spritegroup));
90 
91  if (e->grf_prop.spritegroup[cargo] != NULL) {
92  grfmsg(6, "SetCustomEngineSprites: engine %d cargo %d already has group -- replacing", engine, cargo);
93  }
94  e->grf_prop.spritegroup[cargo] = group;
95 }
96 
97 
104 void SetEngineGRF(EngineID engine, const GRFFile *file)
105 {
106  Engine *e = Engine::Get(engine);
107  e->grf_prop.grffile = file;
108 }
109 
110 
111 static int MapOldSubType(const Vehicle *v)
112 {
113  switch (v->type) {
114  case VEH_TRAIN:
115  if (Train::From(v)->IsEngine()) return 0;
116  if (Train::From(v)->IsFreeWagon()) return 4;
117  return 2;
118  case VEH_ROAD:
119  case VEH_SHIP: return 0;
120  case VEH_AIRCRAFT:
121  case VEH_DISASTER: return v->subtype;
122  case VEH_EFFECT: return v->subtype << 1;
123  default: NOT_REACHED();
124  }
125 }
126 
127 
128 /* TTDP style aircraft movement states for GRF Action 2 Var 0xE2 */
129 enum TTDPAircraftMovementStates {
130  AMS_TTDP_HANGAR,
131  AMS_TTDP_TO_HANGAR,
132  AMS_TTDP_TO_PAD1,
133  AMS_TTDP_TO_PAD2,
134  AMS_TTDP_TO_PAD3,
135  AMS_TTDP_TO_ENTRY_2_AND_3,
136  AMS_TTDP_TO_ENTRY_2_AND_3_AND_H,
137  AMS_TTDP_TO_JUNCTION,
138  AMS_TTDP_LEAVE_RUNWAY,
139  AMS_TTDP_TO_INWAY,
140  AMS_TTDP_TO_RUNWAY,
141  AMS_TTDP_TO_OUTWAY,
142  AMS_TTDP_WAITING,
143  AMS_TTDP_TAKEOFF,
144  AMS_TTDP_TO_TAKEOFF,
145  AMS_TTDP_CLIMBING,
146  AMS_TTDP_FLIGHT_APPROACH,
147  AMS_TTDP_UNUSED_0x11,
148  AMS_TTDP_FLIGHT_TO_TOWER,
149  AMS_TTDP_UNUSED_0x13,
150  AMS_TTDP_FLIGHT_FINAL,
151  AMS_TTDP_FLIGHT_DESCENT,
152  AMS_TTDP_BRAKING,
153  AMS_TTDP_HELI_TAKEOFF_AIRPORT,
154  AMS_TTDP_HELI_TO_TAKEOFF_AIRPORT,
155  AMS_TTDP_HELI_LAND_AIRPORT,
156  AMS_TTDP_HELI_TAKEOFF_HELIPORT,
157  AMS_TTDP_HELI_TO_TAKEOFF_HELIPORT,
158  AMS_TTDP_HELI_LAND_HELIPORT,
159 };
160 
161 
166 static byte MapAircraftMovementState(const Aircraft *v)
167 {
168  const Station *st = GetTargetAirportIfValid(v);
169  if (st == NULL) return AMS_TTDP_FLIGHT_TO_TOWER;
170 
171  const AirportFTAClass *afc = st->airport.GetFTA();
172  uint16 amdflag = afc->MovingData(v->pos)->flag;
173 
174  switch (v->state) {
175  case HANGAR:
176  /* The international airport is a special case as helicopters can land in
177  * front of the hangar. Helicopters also change their air.state to
178  * AMED_HELI_LOWER some time before actually descending. */
179 
180  /* This condition only occurs for helicopters, during descent,
181  * to a landing by the hangar of an international airport. */
182  if (amdflag & AMED_HELI_LOWER) return AMS_TTDP_HELI_LAND_AIRPORT;
183 
184  /* This condition only occurs for helicopters, before starting descent,
185  * to a landing by the hangar of an international airport. */
186  if (amdflag & AMED_SLOWTURN) return AMS_TTDP_FLIGHT_TO_TOWER;
187 
188  /* The final two conditions apply to helicopters or aircraft.
189  * Has reached hangar? */
190  if (amdflag & AMED_EXACTPOS) return AMS_TTDP_HANGAR;
191 
192  /* Still moving towards hangar. */
193  return AMS_TTDP_TO_HANGAR;
194 
195  case TERM1:
196  if (amdflag & AMED_EXACTPOS) return AMS_TTDP_TO_PAD1;
197  return AMS_TTDP_TO_JUNCTION;
198 
199  case TERM2:
200  if (amdflag & AMED_EXACTPOS) return AMS_TTDP_TO_PAD2;
201  return AMS_TTDP_TO_ENTRY_2_AND_3_AND_H;
202 
203  case TERM3:
204  case TERM4:
205  case TERM5:
206  case TERM6:
207  case TERM7:
208  case TERM8:
209  /* TTDPatch only has 3 terminals, so treat these states the same */
210  if (amdflag & AMED_EXACTPOS) return AMS_TTDP_TO_PAD3;
211  return AMS_TTDP_TO_ENTRY_2_AND_3_AND_H;
212 
213  case HELIPAD1:
214  case HELIPAD2:
215  case HELIPAD3:
216  /* Will only occur for helicopters.*/
217  if (amdflag & AMED_HELI_LOWER) return AMS_TTDP_HELI_LAND_AIRPORT; // Descending.
218  if (amdflag & AMED_SLOWTURN) return AMS_TTDP_FLIGHT_TO_TOWER; // Still hasn't started descent.
219  return AMS_TTDP_TO_JUNCTION; // On the ground.
220 
221  case TAKEOFF: // Moving to takeoff position.
222  return AMS_TTDP_TO_OUTWAY;
223 
224  case STARTTAKEOFF: // Accelerating down runway.
225  return AMS_TTDP_TAKEOFF;
226 
227  case ENDTAKEOFF: // Ascent
228  return AMS_TTDP_CLIMBING;
229 
230  case HELITAKEOFF: // Helicopter is moving to take off position.
231  if (afc->delta_z == 0) {
232  return amdflag & AMED_HELI_RAISE ?
233  AMS_TTDP_HELI_TAKEOFF_AIRPORT : AMS_TTDP_TO_JUNCTION;
234  } else {
235  return AMS_TTDP_HELI_TAKEOFF_HELIPORT;
236  }
237 
238  case FLYING:
239  return amdflag & AMED_HOLD ? AMS_TTDP_FLIGHT_APPROACH : AMS_TTDP_FLIGHT_TO_TOWER;
240 
241  case LANDING: // Descent
242  return AMS_TTDP_FLIGHT_DESCENT;
243 
244  case ENDLANDING: // On the runway braking
245  if (amdflag & AMED_BRAKE) return AMS_TTDP_BRAKING;
246  /* Landed - moving off runway */
247  return AMS_TTDP_TO_INWAY;
248 
249  case HELILANDING:
250  case HELIENDLANDING: // Helicoptor is decending.
251  if (amdflag & AMED_HELI_LOWER) {
252  return afc->delta_z == 0 ?
253  AMS_TTDP_HELI_LAND_AIRPORT : AMS_TTDP_HELI_LAND_HELIPORT;
254  } else {
255  return AMS_TTDP_FLIGHT_TO_TOWER;
256  }
257 
258  default:
259  return AMS_TTDP_HANGAR;
260  }
261 }
262 
263 
264 /* TTDP style aircraft movement action for GRF Action 2 Var 0xE6 */
265 enum TTDPAircraftMovementActions {
266  AMA_TTDP_IN_HANGAR,
267  AMA_TTDP_ON_PAD1,
268  AMA_TTDP_ON_PAD2,
269  AMA_TTDP_ON_PAD3,
270  AMA_TTDP_HANGAR_TO_PAD1,
271  AMA_TTDP_HANGAR_TO_PAD2,
272  AMA_TTDP_HANGAR_TO_PAD3,
273  AMA_TTDP_LANDING_TO_PAD1,
274  AMA_TTDP_LANDING_TO_PAD2,
275  AMA_TTDP_LANDING_TO_PAD3,
276  AMA_TTDP_PAD1_TO_HANGAR,
277  AMA_TTDP_PAD2_TO_HANGAR,
278  AMA_TTDP_PAD3_TO_HANGAR,
279  AMA_TTDP_PAD1_TO_TAKEOFF,
280  AMA_TTDP_PAD2_TO_TAKEOFF,
281  AMA_TTDP_PAD3_TO_TAKEOFF,
282  AMA_TTDP_HANGAR_TO_TAKOFF,
283  AMA_TTDP_LANDING_TO_HANGAR,
284  AMA_TTDP_IN_FLIGHT,
285 };
286 
287 
293 static byte MapAircraftMovementAction(const Aircraft *v)
294 {
295  switch (v->state) {
296  case HANGAR:
297  return (v->cur_speed > 0) ? AMA_TTDP_LANDING_TO_HANGAR : AMA_TTDP_IN_HANGAR;
298 
299  case TERM1:
300  case HELIPAD1:
301  return (v->current_order.IsType(OT_LOADING)) ? AMA_TTDP_ON_PAD1 : AMA_TTDP_LANDING_TO_PAD1;
302 
303  case TERM2:
304  case HELIPAD2:
305  return (v->current_order.IsType(OT_LOADING)) ? AMA_TTDP_ON_PAD2 : AMA_TTDP_LANDING_TO_PAD2;
306 
307  case TERM3:
308  case TERM4:
309  case TERM5:
310  case TERM6:
311  case TERM7:
312  case TERM8:
313  case HELIPAD3:
314  return (v->current_order.IsType(OT_LOADING)) ? AMA_TTDP_ON_PAD3 : AMA_TTDP_LANDING_TO_PAD3;
315 
316  case TAKEOFF: // Moving to takeoff position
317  case STARTTAKEOFF: // Accelerating down runway
318  case ENDTAKEOFF: // Ascent
319  case HELITAKEOFF:
320  /* @todo Need to find which terminal (or hangar) we've come from. How? */
321  return AMA_TTDP_PAD1_TO_TAKEOFF;
322 
323  case FLYING:
324  return AMA_TTDP_IN_FLIGHT;
325 
326  case LANDING: // Descent
327  case ENDLANDING: // On the runway braking
328  case HELILANDING:
329  case HELIENDLANDING:
330  /* @todo Need to check terminal we're landing to. Is it known yet? */
331  return (v->current_order.IsType(OT_GOTO_DEPOT)) ?
332  AMA_TTDP_LANDING_TO_HANGAR : AMA_TTDP_LANDING_TO_PAD1;
333 
334  default:
335  return AMA_TTDP_IN_HANGAR;
336  }
337 }
338 
339 
340 /* virtual */ uint32 VehicleScopeResolver::GetRandomBits() const
341 {
342  return this->v == NULL ? 0 : this->v->random_bits;
343 }
344 
345 /* virtual */ uint32 VehicleScopeResolver::GetTriggers() const
346 {
347  return this->v == NULL ? 0 : this->v->waiting_triggers;
348 }
349 
350 
352 {
353  switch (scope) {
354  case VSG_SCOPE_SELF: return &this->self_scope;
355  case VSG_SCOPE_PARENT: return &this->parent_scope;
356  case VSG_SCOPE_RELATIVE: {
357  int32 count = GB(relative, 0, 4);
358  if (this->self_scope.v != NULL && (relative != this->cached_relative_count || count == 0)) {
359  /* Note: This caching only works as long as the VSG_SCOPE_RELATIVE cannot be used in
360  * VarAct2 with procedure calls. */
361  if (count == 0) count = GetRegister(0x100);
362 
363  const Vehicle *v = NULL;
364  switch (GB(relative, 6, 2)) {
365  default: NOT_REACHED();
366  case 0x00: // count back (away from the engine), starting at this vehicle
367  v = this->self_scope.v;
368  break;
369  case 0x01: // count forward (toward the engine), starting at this vehicle
370  v = this->self_scope.v;
371  count = -count;
372  break;
373  case 0x02: // count back, starting at the engine
374  v = this->parent_scope.v;
375  break;
376  case 0x03: { // count back, starting at the first vehicle in this chain of vehicles with the same ID, as for vehicle variable 41
377  const Vehicle *self = this->self_scope.v;
378  for (const Vehicle *u = self->First(); u != self; u = u->Next()) {
379  if (u->engine_type != self->engine_type) {
380  v = NULL;
381  } else {
382  if (v == NULL) v = u;
383  }
384  }
385  if (v == NULL) v = self;
386  break;
387  }
388  }
389  this->relative_scope.SetVehicle(v->Move(count));
390  }
391  return &this->relative_scope;
392  }
393  default: return ResolverObject::GetScope(scope, relative);
394  }
395 }
396 
406 static const Livery *LiveryHelper(EngineID engine, const Vehicle *v)
407 {
408  const Livery *l;
409 
410  if (v == NULL) {
411  if (!Company::IsValidID(_current_company)) return NULL;
413  } else if (v->IsGroundVehicle()) {
415  } else {
417  }
418 
419  return l;
420 }
421 
429 static uint32 PositionHelper(const Vehicle *v, bool consecutive)
430 {
431  const Vehicle *u;
432  byte chain_before = 0;
433  byte chain_after = 0;
434 
435  for (u = v->First(); u != v; u = u->Next()) {
436  chain_before++;
437  if (consecutive && u->engine_type != v->engine_type) chain_before = 0;
438  }
439 
440  while (u->Next() != NULL && (!consecutive || u->Next()->engine_type == v->engine_type)) {
441  chain_after++;
442  u = u->Next();
443  }
444 
445  return chain_before | chain_after << 8 | (chain_before + chain_after + consecutive) << 16;
446 }
447 
448 static uint32 VehicleGetVariable(Vehicle *v, const VehicleScopeResolver *object, byte variable, uint32 parameter, bool *available)
449 {
450  /* Calculated vehicle parameters */
451  switch (variable) {
452  case 0x25: // Get engine GRF ID
453  return v->GetGRFID();
454 
455  case 0x40: // Get length of consist
459  }
461 
462  case 0x41: // Get length of same consecutive wagons
466  }
468 
469  case 0x42: { // Consist cargo information
471  const Vehicle *u;
472  byte cargo_classes = 0;
473  uint8 common_cargoes[NUM_CARGO];
474  uint8 common_subtypes[256];
475  byte user_def_data = 0;
476  CargoID common_cargo_type = CT_INVALID;
477  uint8 common_subtype = 0xFF; // Return 0xFF if nothing is carried
478 
479  /* Reset our arrays */
480  memset(common_cargoes, 0, sizeof(common_cargoes));
481  memset(common_subtypes, 0, sizeof(common_subtypes));
482 
483  for (u = v; u != NULL; u = u->Next()) {
484  if (v->type == VEH_TRAIN) user_def_data |= Train::From(u)->tcache.user_def_data;
485 
486  /* Skip empty engines */
487  if (!u->GetEngine()->CanCarryCargo()) continue;
488 
489  cargo_classes |= CargoSpec::Get(u->cargo_type)->classes;
490  common_cargoes[u->cargo_type]++;
491  }
492 
493  /* Pick the most common cargo type */
494  uint common_cargo_best_amount = 0;
495  for (CargoID cargo = 0; cargo < NUM_CARGO; cargo++) {
496  if (common_cargoes[cargo] > common_cargo_best_amount) {
497  common_cargo_best_amount = common_cargoes[cargo];
498  common_cargo_type = cargo;
499  }
500  }
501 
502  /* Count subcargo types of common_cargo_type */
503  for (u = v; u != NULL; u = u->Next()) {
504  /* Skip empty engines and engines not carrying common_cargo_type */
505  if (u->cargo_type != common_cargo_type || !u->GetEngine()->CanCarryCargo()) continue;
506 
507  common_subtypes[u->cargo_subtype]++;
508  }
509 
510  /* Pick the most common subcargo type*/
511  uint common_subtype_best_amount = 0;
512  for (uint i = 0; i < lengthof(common_subtypes); i++) {
513  if (common_subtypes[i] > common_subtype_best_amount) {
514  common_subtype_best_amount = common_subtypes[i];
515  common_subtype = i;
516  }
517  }
518 
519  /* Note: We have to store the untranslated cargotype in the cache as the cache can be read by different NewGRFs,
520  * which will need different translations */
521  v->grf_cache.consist_cargo_information = cargo_classes | (common_cargo_type << 8) | (common_subtype << 16) | (user_def_data << 24);
523  }
524 
525  /* The cargo translation is specific to the accessing GRF, and thus cannot be cached. */
526  CargoID common_cargo_type = (v->grf_cache.consist_cargo_information >> 8) & 0xFF;
527 
528  /* Note:
529  * - Unlike everywhere else the cargo translation table is only used since grf version 8, not 7.
530  * - For translating the cargo type we need to use the GRF which is resolving the variable, which
531  * is object->ro.grffile.
532  * In case of CBID_TRAIN_ALLOW_WAGON_ATTACH this is not the same as v->GetGRF().
533  * - The grffile == NULL case only happens if this function is called for default vehicles.
534  * And this is only done by CheckCaches().
535  */
536  const GRFFile *grffile = object->ro.grffile;
537  uint8 common_bitnum = (common_cargo_type == CT_INVALID) ? 0xFF :
538  (grffile == NULL || grffile->grf_version < 8) ? CargoSpec::Get(common_cargo_type)->bitnum : grffile->cargo_map[common_cargo_type];
539 
540  return (v->grf_cache.consist_cargo_information & 0xFFFF00FF) | common_bitnum << 8;
541  }
542 
543  case 0x43: // Company information
547  }
548  return v->grf_cache.company_information;
549 
550  case 0x44: // Aircraft information
551  if (v->type != VEH_AIRCRAFT || !Aircraft::From(v)->IsNormalAircraft()) return UINT_MAX;
552 
553  {
554  const Vehicle *w = v->Next();
555  uint16 altitude = ClampToU16(v->z_pos - w->z_pos); // Aircraft height - shadow height
556  byte airporttype = ATP_TTDP_LARGE;
557 
559 
560  if (st != NULL && st->airport.tile != INVALID_TILE) {
561  airporttype = st->airport.GetSpec()->ttd_airport_type;
562  }
563 
564  return (Clamp(altitude, 0, 0xFF) << 8) | airporttype;
565  }
566 
567  case 0x45: { // Curvature info
568  /* Format: xxxTxBxF
569  * F - previous wagon to current wagon, 0 if vehicle is first
570  * B - current wagon to next wagon, 0 if wagon is last
571  * T - previous wagon to next wagon, 0 in an S-bend
572  */
573  if (!v->IsGroundVehicle()) return 0;
574 
575  const Vehicle *u_p = v->Previous();
576  const Vehicle *u_n = v->Next();
577  DirDiff f = (u_p == NULL) ? DIRDIFF_SAME : DirDifference(u_p->direction, v->direction);
578  DirDiff b = (u_n == NULL) ? DIRDIFF_SAME : DirDifference(v->direction, u_n->direction);
579  DirDiff t = ChangeDirDiff(f, b);
580 
581  return ((t > DIRDIFF_REVERSE ? t | 8 : t) << 16) |
582  ((b > DIRDIFF_REVERSE ? b | 8 : b) << 8) |
583  ( f > DIRDIFF_REVERSE ? f | 8 : f);
584  }
585 
586  case 0x46: // Motion counter
587  return v->motion_counter;
588 
589  case 0x47: { // Vehicle cargo info
590  /* Format: ccccwwtt
591  * tt - the cargo type transported by the vehicle,
592  * translated if a translation table has been installed.
593  * ww - cargo unit weight in 1/16 tons, same as cargo prop. 0F.
594  * cccc - the cargo class value of the cargo transported by the vehicle.
595  */
596  const CargoSpec *cs = CargoSpec::Get(v->cargo_type);
597 
598  /* Note:
599  * For translating the cargo type we need to use the GRF which is resolving the variable, which
600  * is object->ro.grffile.
601  * In case of CBID_TRAIN_ALLOW_WAGON_ATTACH this is not the same as v->GetGRF().
602  */
603  return (cs->classes << 16) | (cs->weight << 8) | object->ro.grffile->cargo_map[v->cargo_type];
604  }
605 
606  case 0x48: return v->GetEngine()->flags; // Vehicle Type Info
607  case 0x49: return v->build_year;
608 
609  case 0x4A: {
610  if (v->type != VEH_TRAIN) return 0;
611  RailType rt = GetTileRailType(v->tile);
612  return (HasPowerOnRail(Train::From(v)->railtype, rt) ? 0x100 : 0) | GetReverseRailTypeTranslation(rt, object->ro.grffile);
613  }
614 
615  case 0x4B: // Long date of last service
616  return v->date_of_last_service;
617 
618  case 0x4C: // Current maximum speed in NewGRF units
619  if (!v->IsPrimaryVehicle()) return 0;
620  return v->GetCurrentMaxSpeed();
621 
622  case 0x4D: // Position within articulated vehicle
624  byte artic_before = 0;
625  for (const Vehicle *u = v; u->IsArticulatedPart(); u = u->Previous()) artic_before++;
626  byte artic_after = 0;
627  for (const Vehicle *u = v; u->HasArticulatedPart(); u = u->Next()) artic_after++;
628  v->grf_cache.position_in_vehicle = artic_before | artic_after << 8;
630  }
631  return v->grf_cache.position_in_vehicle;
632 
633  /* Variables which use the parameter */
634  case 0x60: // Count consist's engine ID occurrence
635  if (v->type != VEH_TRAIN) return v->GetEngine()->grf_prop.local_id == parameter ? 1 : 0;
636 
637  {
638  uint count = 0;
639  for (; v != NULL; v = v->Next()) {
640  if (v->GetEngine()->grf_prop.local_id == parameter) count++;
641  }
642  return count;
643  }
644 
645  case 0x61: // Get variable of n-th vehicle in chain [signed number relative to vehicle]
646  if (!v->IsGroundVehicle() || parameter == 0x61) {
647  /* Not available */
648  break;
649  }
650 
651  /* Only allow callbacks that don't change properties to avoid circular dependencies. */
655  Vehicle *u = v->Move((int32)GetRegister(0x10F));
656  if (u == NULL) return 0; // available, but zero
657 
658  if (parameter == 0x5F) {
659  /* This seems to be the only variable that makes sense to access via var 61, but is not handled by VehicleGetVariable */
660  return (u->random_bits << 8) | u->waiting_triggers;
661  } else {
662  return VehicleGetVariable(u, object, parameter, GetRegister(0x10E), available);
663  }
664  }
665  /* Not available */
666  break;
667 
668  case 0x62: { // Curvature/position difference for n-th vehicle in chain [signed number relative to vehicle]
669  /* Format: zzyyxxFD
670  * zz - Signed difference of z position between the selected and this vehicle.
671  * yy - Signed difference of y position between the selected and this vehicle.
672  * xx - Signed difference of x position between the selected and this vehicle.
673  * F - Flags, bit 7 corresponds to VS_HIDDEN.
674  * D - Dir difference, like in 0x45.
675  */
676  if (!v->IsGroundVehicle()) return 0;
677 
678  const Vehicle *u = v->Move((int8)parameter);
679  if (u == NULL) return 0;
680 
681  /* Get direction difference. */
682  bool prev = (int8)parameter < 0;
683  uint32 ret = prev ? DirDifference(u->direction, v->direction) : DirDifference(v->direction, u->direction);
684  if (ret > DIRDIFF_REVERSE) ret |= 0x08;
685 
686  if (u->vehstatus & VS_HIDDEN) ret |= 0x80;
687 
688  /* Get position difference. */
689  ret |= ((prev ? u->x_pos - v->x_pos : v->x_pos - u->x_pos) & 0xFF) << 8;
690  ret |= ((prev ? u->y_pos - v->y_pos : v->y_pos - u->y_pos) & 0xFF) << 16;
691  ret |= ((prev ? u->z_pos - v->z_pos : v->z_pos - u->z_pos) & 0xFF) << 24;
692 
693  return ret;
694  }
695 
696  case 0xFE:
697  case 0xFF: {
698  uint16 modflags = 0;
699 
700  if (v->type == VEH_TRAIN) {
701  const Train *t = Train::From(v);
702  bool is_powered_wagon = HasBit(t->flags, VRF_POWEREDWAGON);
703  const Train *u = is_powered_wagon ? t->First() : t; // for powered wagons the engine defines the type of engine (i.e. railtype)
704  RailType railtype = GetRailType(v->tile);
705  bool powered = t->IsEngine() || is_powered_wagon;
706  bool has_power = HasPowerOnRail(u->railtype, railtype);
707 
708  if (powered && has_power) SetBit(modflags, 5);
709  if (powered && !has_power) SetBit(modflags, 6);
710  if (HasBit(t->flags, VRF_TOGGLE_REVERSE)) SetBit(modflags, 8);
711  }
712  if (HasBit(v->vehicle_flags, VF_CARGO_UNLOADING)) SetBit(modflags, 1);
713  if (HasBit(v->vehicle_flags, VF_BUILT_AS_PROTOTYPE)) SetBit(modflags, 10);
714 
715  return variable == 0xFE ? modflags : GB(modflags, 8, 8);
716  }
717  }
718 
719  /* General vehicle properties */
720  switch (variable - 0x80) {
721  case 0x00: return v->type + 0x10;
722  case 0x01: return MapOldSubType(v);
723  case 0x04: return v->index;
724  case 0x05: return GB(v->index, 8, 8);
725  case 0x0A: return v->current_order.MapOldOrder();
726  case 0x0B: return v->current_order.GetDestination();
727  case 0x0C: return v->GetNumOrders();
728  case 0x0D: return v->cur_real_order_index;
729  case 0x10:
730  case 0x11: {
731  uint ticks;
732  if (v->current_order.IsType(OT_LOADING)) {
733  ticks = v->load_unload_ticks;
734  } else {
735  switch (v->type) {
736  case VEH_TRAIN: ticks = Train::From(v)->wait_counter; break;
737  case VEH_AIRCRAFT: ticks = Aircraft::From(v)->turn_counter; break;
738  default: ticks = 0; break;
739  }
740  }
741  return (variable - 0x80) == 0x10 ? ticks : GB(ticks, 8, 8);
742  }
743  case 0x12: return Clamp(v->date_of_last_service - DAYS_TILL_ORIGINAL_BASE_YEAR, 0, 0xFFFF);
744  case 0x13: return GB(Clamp(v->date_of_last_service - DAYS_TILL_ORIGINAL_BASE_YEAR, 0, 0xFFFF), 8, 8);
745  case 0x14: return v->GetServiceInterval();
746  case 0x15: return GB(v->GetServiceInterval(), 8, 8);
747  case 0x16: return v->last_station_visited;
748  case 0x17: return v->tick_counter;
749  case 0x18:
750  case 0x19: {
751  uint max_speed;
752  switch (v->type) {
753  case VEH_AIRCRAFT:
754  max_speed = Aircraft::From(v)->GetSpeedOldUnits(); // Convert to old units.
755  break;
756 
757  default:
758  max_speed = v->vcache.cached_max_speed;
759  break;
760  }
761  return (variable - 0x80) == 0x18 ? max_speed : GB(max_speed, 8, 8);
762  }
763  case 0x1A: return v->x_pos;
764  case 0x1B: return GB(v->x_pos, 8, 8);
765  case 0x1C: return v->y_pos;
766  case 0x1D: return GB(v->y_pos, 8, 8);
767  case 0x1E: return v->z_pos;
768  case 0x1F: return object->info_view ? DIR_W : v->direction;
769  case 0x28: return 0; // cur_image is a potential desyncer due to Action1 in static NewGRFs.
770  case 0x29: return 0; // cur_image is a potential desyncer due to Action1 in static NewGRFs.
771  case 0x32: return v->vehstatus;
772  case 0x33: return 0; // non-existent high byte of vehstatus
773  case 0x34: return v->type == VEH_AIRCRAFT ? (v->cur_speed * 10) / 128 : v->cur_speed;
774  case 0x35: return GB(v->type == VEH_AIRCRAFT ? (v->cur_speed * 10) / 128 : v->cur_speed, 8, 8);
775  case 0x36: return v->subspeed;
776  case 0x37: return v->acceleration;
777  case 0x39: return v->cargo_type;
778  case 0x3A: return v->cargo_cap;
779  case 0x3B: return GB(v->cargo_cap, 8, 8);
780  case 0x3C: return ClampToU16(v->cargo.StoredCount());
781  case 0x3D: return GB(ClampToU16(v->cargo.StoredCount()), 8, 8);
782  case 0x3E: return v->cargo.Source();
783  case 0x3F: return ClampU(v->cargo.DaysInTransit(), 0, 0xFF);
784  case 0x40: return ClampToU16(v->age);
785  case 0x41: return GB(ClampToU16(v->age), 8, 8);
786  case 0x42: return ClampToU16(v->max_age);
787  case 0x43: return GB(ClampToU16(v->max_age), 8, 8);
789  case 0x45: return v->unitnumber;
790  case 0x46: return v->GetEngine()->grf_prop.local_id;
791  case 0x47: return GB(v->GetEngine()->grf_prop.local_id, 8, 8);
792  case 0x48:
793  if (v->type != VEH_TRAIN || v->spritenum != 0xFD) return v->spritenum;
794  return HasBit(Train::From(v)->flags, VRF_REVERSE_DIRECTION) ? 0xFE : 0xFD;
795 
796  case 0x49: return v->day_counter;
797  case 0x4A: return v->breakdowns_since_last_service;
798  case 0x4B: return v->breakdown_ctr;
799  case 0x4C: return v->breakdown_delay;
800  case 0x4D: return v->breakdown_chance;
801  case 0x4E: return v->reliability;
802  case 0x4F: return GB(v->reliability, 8, 8);
803  case 0x50: return v->reliability_spd_dec;
804  case 0x51: return GB(v->reliability_spd_dec, 8, 8);
805  case 0x52: return ClampToI32(v->GetDisplayProfitThisYear());
806  case 0x53: return GB(ClampToI32(v->GetDisplayProfitThisYear()), 8, 24);
807  case 0x54: return GB(ClampToI32(v->GetDisplayProfitThisYear()), 16, 16);
808  case 0x55: return GB(ClampToI32(v->GetDisplayProfitThisYear()), 24, 8);
809  case 0x56: return ClampToI32(v->GetDisplayProfitLastYear());
810  case 0x57: return GB(ClampToI32(v->GetDisplayProfitLastYear()), 8, 24);
811  case 0x58: return GB(ClampToI32(v->GetDisplayProfitLastYear()), 16, 16);
812  case 0x59: return GB(ClampToI32(v->GetDisplayProfitLastYear()), 24, 8);
813  case 0x5A: return v->Next() == NULL ? INVALID_VEHICLE : v->Next()->index;
814  case 0x5C: return ClampToI32(v->value);
815  case 0x5D: return GB(ClampToI32(v->value), 8, 24);
816  case 0x5E: return GB(ClampToI32(v->value), 16, 16);
817  case 0x5F: return GB(ClampToI32(v->value), 24, 8);
818  case 0x72: return v->cargo_subtype;
819  case 0x7A: return v->random_bits;
820  case 0x7B: return v->waiting_triggers;
821  }
822 
823  /* Vehicle specific properties */
824  switch (v->type) {
825  case VEH_TRAIN: {
826  Train *t = Train::From(v);
827  switch (variable - 0x80) {
828  case 0x62: return t->track;
829  case 0x66: return t->railtype;
830  case 0x73: return 0x80 + VEHICLE_LENGTH - t->gcache.cached_veh_length;
831  case 0x74: return t->gcache.cached_power;
832  case 0x75: return GB(t->gcache.cached_power, 8, 24);
833  case 0x76: return GB(t->gcache.cached_power, 16, 16);
834  case 0x77: return GB(t->gcache.cached_power, 24, 8);
835  case 0x7C: return t->First()->index;
836  case 0x7D: return GB(t->First()->index, 8, 8);
837  case 0x7F: return 0; // Used for vehicle reversing hack in TTDP
838  }
839  break;
840  }
841 
842  case VEH_ROAD: {
844  switch (variable - 0x80) {
845  case 0x62: return rv->state;
846  case 0x64: return rv->blocked_ctr;
847  case 0x65: return GB(rv->blocked_ctr, 8, 8);
848  case 0x66: return rv->overtaking;
849  case 0x67: return rv->overtaking_ctr;
850  case 0x68: return rv->crashed_ctr;
851  case 0x69: return GB(rv->crashed_ctr, 8, 8);
852  }
853  break;
854  }
855 
856  case VEH_SHIP: {
857  Ship *s = Ship::From(v);
858  switch (variable - 0x80) {
859  case 0x62: return s->state;
860  }
861  break;
862  }
863 
864  case VEH_AIRCRAFT: {
865  Aircraft *a = Aircraft::From(v);
866  switch (variable - 0x80) {
867  case 0x62: return MapAircraftMovementState(a); // Current movement state
868  case 0x63: return a->targetairport; // Airport to which the action refers
869  case 0x66: return MapAircraftMovementAction(a); // Current movement action
870  }
871  break;
872  }
873 
874  default: break;
875  }
876 
877  DEBUG(grf, 1, "Unhandled vehicle variable 0x%X, type 0x%X", variable, (uint)v->type);
878 
879  *available = false;
880  return UINT_MAX;
881 }
882 
883 /* virtual */ uint32 VehicleScopeResolver::GetVariable(byte variable, uint32 parameter, bool *available) const
884 {
885  if (this->v == NULL) {
886  /* Vehicle does not exist, so we're in a purchase list */
887  switch (variable) {
888  case 0x43: return GetCompanyInfo(_current_company, LiveryHelper(this->self_type, NULL)); // Owner information
889  case 0x46: return 0; // Motion counter
890  case 0x47: { // Vehicle cargo info
891  const Engine *e = Engine::Get(this->self_type);
892  CargoID cargo_type = e->GetDefaultCargoType();
893  if (cargo_type != CT_INVALID) {
894  const CargoSpec *cs = CargoSpec::Get(cargo_type);
895  return (cs->classes << 16) | (cs->weight << 8) | this->ro.grffile->cargo_map[cargo_type];
896  } else {
897  return 0x000000FF;
898  }
899  }
900  case 0x48: return Engine::Get(this->self_type)->flags; // Vehicle Type Info
901  case 0x49: return _cur_year; // 'Long' format build year
902  case 0x4B: return _date; // Long date of last service
903  case 0x92: return Clamp(_date - DAYS_TILL_ORIGINAL_BASE_YEAR, 0, 0xFFFF); // Date of last service
904  case 0x93: return GB(Clamp(_date - DAYS_TILL_ORIGINAL_BASE_YEAR, 0, 0xFFFF), 8, 8);
905  case 0xC4: return Clamp(_cur_year, ORIGINAL_BASE_YEAR, ORIGINAL_MAX_YEAR) - ORIGINAL_BASE_YEAR; // Build year
906  case 0xDA: return INVALID_VEHICLE; // Next vehicle
907  case 0xF2: return 0; // Cargo subtype
908  }
909 
910  *available = false;
911  return UINT_MAX;
912  }
913 
914  return VehicleGetVariable(const_cast<Vehicle*>(this->v), this, variable, parameter, available);
915 }
916 
917 
918 /* virtual */ const SpriteGroup *VehicleResolverObject::ResolveReal(const RealSpriteGroup *group) const
919 {
920  const Vehicle *v = this->self_scope.v;
921 
922  if (v == NULL) {
923  if (group->num_loading > 0) return group->loading[0];
924  if (group->num_loaded > 0) return group->loaded[0];
925  return NULL;
926  }
927 
928  bool in_motion = !v->First()->current_order.IsType(OT_LOADING);
929 
930  uint totalsets = in_motion ? group->num_loaded : group->num_loading;
931 
932  if (totalsets == 0) return NULL;
933 
934  uint set = (v->cargo.StoredCount() * totalsets) / max((uint16)1, v->cargo_cap);
935  set = min(set, totalsets - 1);
936 
937  return in_motion ? group->loaded[set] : group->loading[set];
938 }
939 
945 static const GRFFile *GetEngineGrfFile(EngineID engine_type)
946 {
947  const Engine *e = Engine::Get(engine_type);
948  return (e != NULL) ? e->GetGRF() : NULL;
949 }
950 
961 VehicleResolverObject::VehicleResolverObject(EngineID engine_type, const Vehicle *v, WagonOverride wagon_override, bool info_view,
962  CallbackID callback, uint32 callback_param1, uint32 callback_param2)
963  : ResolverObject(GetEngineGrfFile(engine_type), callback, callback_param1, callback_param2),
964  self_scope(*this, engine_type, v, info_view),
965  parent_scope(*this, engine_type, ((v != NULL) ? v->First() : v), info_view),
966  relative_scope(*this, engine_type, v, info_view),
967  cached_relative_count(0)
968 {
969  if (wagon_override == WO_SELF) {
970  this->root_spritegroup = GetWagonOverrideSpriteSet(engine_type, CT_DEFAULT, engine_type);
971  } else {
972  if (wagon_override != WO_NONE && v != NULL && v->IsGroundVehicle()) {
973  assert(v->engine_type == engine_type); // overrides make little sense with fake scopes
974 
975  /* For trains we always use cached value, except for callbacks because the override spriteset
976  * to use may be different than the one cached. It happens for callback 0x15 (refit engine),
977  * as v->cargo_type is temporary changed to the new type */
978  if (wagon_override == WO_CACHED && v->type == VEH_TRAIN) {
979  this->root_spritegroup = Train::From(v)->tcache.cached_override;
980  } else {
981  this->root_spritegroup = GetWagonOverrideSpriteSet(v->engine_type, v->cargo_type, v->GetGroundVehicleCache()->first_engine);
982  }
983  }
984 
985  if (this->root_spritegroup == NULL) {
986  const Engine *e = Engine::Get(engine_type);
987  CargoID cargo = v != NULL ? v->cargo_type : CT_PURCHASE;
988  assert(cargo < lengthof(e->grf_prop.spritegroup));
989  this->root_spritegroup = e->grf_prop.spritegroup[cargo] != NULL ? e->grf_prop.spritegroup[cargo] : e->grf_prop.spritegroup[CT_DEFAULT];
990  }
991  }
992 }
993 
994 
995 
996 void GetCustomEngineSprite(EngineID engine, const Vehicle *v, Direction direction, EngineImageType image_type, VehicleSpriteSeq *result)
997 {
999  result->Clear();
1000 
1001  bool sprite_stack = HasBit(EngInfo(engine)->misc_flags, EF_SPRITE_STACK);
1002  uint max_stack = sprite_stack ? lengthof(result->seq) : 1;
1003  for (uint stack = 0; stack < max_stack; ++stack) {
1004  object.ResetState();
1005  object.callback_param1 = image_type | (stack << 8);
1006  const SpriteGroup *group = object.Resolve();
1007  uint32 reg100 = sprite_stack ? GetRegister(0x100) : 0;
1008  if (group != NULL && group->GetNumResults() != 0) {
1009  result->seq[result->count].sprite = group->GetResult() + (direction % group->GetNumResults());
1010  result->seq[result->count].pal = GB(reg100, 0, 16); // zero means default recolouring
1011  result->count++;
1012  }
1013  if (!HasBit(reg100, 31)) break;
1014  }
1015 }
1016 
1017 
1018 void GetRotorOverrideSprite(EngineID engine, const struct Aircraft *v, bool info_view, EngineImageType image_type, VehicleSpriteSeq *result)
1019 {
1020  const Engine *e = Engine::Get(engine);
1021 
1022  /* Only valid for helicopters */
1023  assert(e->type == VEH_AIRCRAFT);
1024  assert(!(e->u.air.subtype & AIR_CTOL));
1025 
1027  result->Clear();
1028  uint rotor_pos = v == NULL || info_view ? 0 : v->Next()->Next()->state;
1029 
1030  bool sprite_stack = HasBit(e->info.misc_flags, EF_SPRITE_STACK);
1031  uint max_stack = sprite_stack ? lengthof(result->seq) : 1;
1032  for (uint stack = 0; stack < max_stack; ++stack) {
1033  object.ResetState();
1034  object.callback_param1 = image_type | (stack << 8);
1035  const SpriteGroup *group = object.Resolve();
1036  uint32 reg100 = sprite_stack ? GetRegister(0x100) : 0;
1037  if (group != NULL && group->GetNumResults() != 0) {
1038  result->seq[result->count].sprite = group->GetResult() + (rotor_pos % group->GetNumResults());
1039  result->seq[result->count].pal = GB(reg100, 0, 16); // zero means default recolouring
1040  result->count++;
1041  }
1042  if (!HasBit(reg100, 31)) break;
1043  }
1044 }
1045 
1046 
1053 {
1054  assert(v->type == VEH_TRAIN);
1055  return Train::From(v)->tcache.cached_override != NULL;
1056 }
1057 
1067 uint16 GetVehicleCallback(CallbackID callback, uint32 param1, uint32 param2, EngineID engine, const Vehicle *v)
1068 {
1069  VehicleResolverObject object(engine, v, VehicleResolverObject::WO_UNCACHED, false, callback, param1, param2);
1070  return object.ResolveCallback();
1071 }
1072 
1083 uint16 GetVehicleCallbackParent(CallbackID callback, uint32 param1, uint32 param2, EngineID engine, const Vehicle *v, const Vehicle *parent)
1084 {
1085  VehicleResolverObject object(engine, v, VehicleResolverObject::WO_NONE, false, callback, param1, param2);
1086  object.parent_scope.SetVehicle(parent);
1087  return object.ResolveCallback();
1088 }
1089 
1090 
1091 /* Callback 36 handlers */
1092 uint GetVehicleProperty(const Vehicle *v, PropertyID property, uint orig_value)
1093 {
1094  return GetEngineProperty(v->engine_type, property, orig_value, v);
1095 }
1096 
1097 
1098 uint GetEngineProperty(EngineID engine, PropertyID property, uint orig_value, const Vehicle *v)
1099 {
1100  uint16 callback = GetVehicleCallback(CBID_VEHICLE_MODIFY_PROPERTY, property, 0, engine, v);
1101  if (callback != CALLBACK_FAILED) return callback;
1102 
1103  return orig_value;
1104 }
1105 
1106 
1107 static void DoTriggerVehicle(Vehicle *v, VehicleTrigger trigger, byte base_random_bits, bool first)
1108 {
1109  /* We can't trigger a non-existent vehicle... */
1110  assert(v != NULL);
1111 
1113  object.waiting_triggers = v->waiting_triggers | trigger;
1114  v->waiting_triggers = object.waiting_triggers; // store now for var 5F
1115 
1116  const SpriteGroup *group = object.Resolve();
1117  if (group == NULL) return;
1118 
1119  /* Store remaining triggers. */
1120  v->waiting_triggers = object.GetRemainingTriggers();
1121 
1122  /* Rerandomise bits. Scopes other than SELF are invalid for rerandomisation. For bug-to-bug-compatibility with TTDP we ignore the scope. */
1123  byte new_random_bits = Random();
1124  uint32 reseed = object.GetReseedSum();
1125  v->random_bits &= ~reseed;
1126  v->random_bits |= (first ? new_random_bits : base_random_bits) & reseed;
1127 
1128  switch (trigger) {
1129  case VEHICLE_TRIGGER_NEW_CARGO:
1130  /* All vehicles in chain get ANY_NEW_CARGO trigger now.
1131  * So we call it for the first one and they will recurse.
1132  * Indexing part of vehicle random bits needs to be
1133  * same for all triggered vehicles in the chain (to get
1134  * all the random-cargo wagons carry the same cargo,
1135  * i.e.), so we give them all the NEW_CARGO triggered
1136  * vehicle's portion of random bits. */
1137  assert(first);
1138  DoTriggerVehicle(v->First(), VEHICLE_TRIGGER_ANY_NEW_CARGO, new_random_bits, false);
1139  break;
1140 
1141  case VEHICLE_TRIGGER_DEPOT:
1142  /* We now trigger the next vehicle in chain recursively.
1143  * The random bits portions may be different for each
1144  * vehicle in chain. */
1145  if (v->Next() != NULL) DoTriggerVehicle(v->Next(), trigger, 0, true);
1146  break;
1147 
1148  case VEHICLE_TRIGGER_EMPTY:
1149  /* We now trigger the next vehicle in chain
1150  * recursively. The random bits portions must be same
1151  * for each vehicle in chain, so we give them all
1152  * first chained vehicle's portion of random bits. */
1153  if (v->Next() != NULL) DoTriggerVehicle(v->Next(), trigger, first ? new_random_bits : base_random_bits, false);
1154  break;
1155 
1156  case VEHICLE_TRIGGER_ANY_NEW_CARGO:
1157  /* Now pass the trigger recursively to the next vehicle
1158  * in chain. */
1159  assert(!first);
1160  if (v->Next() != NULL) DoTriggerVehicle(v->Next(), VEHICLE_TRIGGER_ANY_NEW_CARGO, base_random_bits, false);
1161  break;
1162 
1163  case VEHICLE_TRIGGER_CALLBACK_32:
1164  /* Do not do any recursion */
1165  break;
1166  }
1167 }
1168 
1169 void TriggerVehicle(Vehicle *v, VehicleTrigger trigger)
1170 {
1171  if (trigger == VEHICLE_TRIGGER_DEPOT) {
1172  /* store that the vehicle entered a depot this tick */
1174  }
1175 
1177  DoTriggerVehicle(v, trigger, 0, true);
1179 }
1180 
1181 /* Functions for changing the order of vehicle purchase lists */
1182 
1184  EngineID engine;
1185  uint target;
1186 };
1187 
1188 static SmallVector<ListOrderChange, 16> _list_order_changes;
1189 
1196 void AlterVehicleListOrder(EngineID engine, uint target)
1197 {
1198  /* Add the list order change to a queue */
1199  ListOrderChange *loc = _list_order_changes.Append();
1200  loc->engine = engine;
1201  loc->target = target;
1202 }
1203 
1210 static int CDECL EnginePreSort(const EngineID *a, const EngineID *b)
1211 {
1212  const EngineIDMapping *id_a = _engine_mngr.Get(*a);
1213  const EngineIDMapping *id_b = _engine_mngr.Get(*b);
1214 
1215  /* 1. Sort by engine type */
1216  if (id_a->type != id_b->type) return (int)id_a->type - (int)id_b->type;
1217 
1218  /* 2. Sort by scope-GRFID */
1219  if (id_a->grfid != id_b->grfid) return id_a->grfid < id_b->grfid ? -1 : 1;
1220 
1221  /* 3. Sort by local ID */
1222  return (int)id_a->internal_id - (int)id_b->internal_id;
1223 }
1224 
1229 {
1230  /* Pre-sort engines by scope-grfid and local index */
1231  SmallVector<EngineID, 16> ordering;
1232  Engine *e;
1233  FOR_ALL_ENGINES(e) {
1234  *ordering.Append() = e->index;
1235  }
1236  QSortT(ordering.Begin(), ordering.Length(), EnginePreSort);
1237 
1238  /* Apply Insertion-Sort operations */
1239  const ListOrderChange *end = _list_order_changes.End();
1240  for (const ListOrderChange *it = _list_order_changes.Begin(); it != end; ++it) {
1241  EngineID source = it->engine;
1242  uint local_target = it->target;
1243 
1244  const EngineIDMapping *id_source = _engine_mngr.Get(source);
1245  if (id_source->internal_id == local_target) continue;
1246 
1247  EngineID target = _engine_mngr.GetID(id_source->type, local_target, id_source->grfid);
1248  if (target == INVALID_ENGINE) continue;
1249 
1250  int source_index = ordering.FindIndex(source);
1251  int target_index = ordering.FindIndex(target);
1252 
1253  assert(source_index >= 0 && target_index >= 0);
1254  assert(source_index != target_index);
1255 
1256  EngineID *list = ordering.Begin();
1257  if (source_index < target_index) {
1258  --target_index;
1259  for (int i = source_index; i < target_index; ++i) list[i] = list[i + 1];
1260  list[target_index] = source;
1261  } else {
1262  for (int i = source_index; i > target_index; --i) list[i] = list[i - 1];
1263  list[target_index] = source;
1264  }
1265  }
1266 
1267  /* Store final sort-order */
1268  const EngineID *idend = ordering.End();
1269  uint index = 0;
1270  for (const EngineID *it = ordering.Begin(); it != idend; ++it, ++index) {
1271  Engine::Get(*it)->list_position = index;
1272  }
1273 
1274  /* Clear out the queue */
1275  _list_order_changes.Reset();
1276 }
1277 
1283 {
1285 
1286  /* These variables we have to check; these are the ones with a cache. */
1287  static const int cache_entries[][2] = {
1288  { 0x40, NCVV_POSITION_CONSIST_LENGTH },
1289  { 0x41, NCVV_POSITION_SAME_ID_LENGTH },
1291  { 0x43, NCVV_COMPANY_INFORMATION },
1292  { 0x4D, NCVV_POSITION_IN_VEHICLE },
1293  };
1294  assert_compile(NCVV_END == lengthof(cache_entries));
1295 
1296  /* Resolve all the variables, so their caches are set. */
1297  for (size_t i = 0; i < lengthof(cache_entries); i++) {
1298  /* Only resolve when the cache isn't valid. */
1299  if (HasBit(v->grf_cache.cache_valid, cache_entries[i][1])) continue;
1300  bool stub;
1301  ro.GetScope(VSG_SCOPE_SELF)->GetVariable(cache_entries[i][0], 0, &stub);
1302  }
1303 
1304  /* Make sure really all bits are set. */
1305  assert(v->grf_cache.cache_valid == (1 << NCVV_END) - 1);
1306 }
StationID Source() const
Returns source of the first cargo packet in this list.
Definition: cargopacket.h:337
Road vehicle states.
static bool HasPowerOnRail(RailType enginetype, RailType tiletype)
Checks if an engine of the given RailType got power on a tile with a given RailType.
Definition: rail.h:324
TTDPAirportType ttd_airport_type
ttdpatch airport type (Small/Large/Helipad/Oilrig)
Interface to query and set values specific to a single VarSpriteGroupScope (action 2 scope)...
Date max_age
Maximum age.
Definition: vehicle_base.h:259
This bit will be set if the NewGRF var 41 currently stored is valid.
Definition: vehicle_base.h:59
Vehicle * Previous() const
Get the previous vehicle of this vehicle.
Definition: vehicle_base.h:589
Airplane wants to leave the airport.
Definition: airport.h:73
VehicleCargoList cargo
The cargo this vehicle is carrying.
Definition: vehicle_base.h:309
byte state
Definition: roadveh.h:89
Resolver for a vehicle scope.
Definition: newgrf_engine.h:24
Heading for hangar.
Definition: airport.h:64
Definition of stuff that is very close to a company, like the company struct itself.
uint32 motion_counter
counter to occasionally play a vehicle sound.
Definition: vehicle_base.h:296
Heading for terminal 1.
Definition: airport.h:65
Money value
Value of the vehicle.
Definition: vehicle_base.h:241
Airplane has reached end-point of the take-off runway.
Definition: airport.h:75
NewGRF handling of rail types.
static const uint CALLBACK_FAILED
Different values for Callback result evaluations.
Finite sTate mAchine (FTA) of an airport.
Definition: airport.h:144
Heading for helipad 2.
Definition: airport.h:72
This bit will be set if the NewGRF var 40 currently stored is valid.
Definition: vehicle_base.h:58
const AirportSpec * GetSpec() const
Get the AirportSpec that from the airport type of this airport.
Definition: station_base.h:320
uint8 weight
Weight of a single unit of this cargo type in 1/16 ton (62.5 kg).
Definition: cargotype.h:61
bool UsesWagonOverride(const Vehicle *v)
Check if a wagon is currently using a wagon override.
StationID targetairport
Airport to go to next.
Definition: aircraft.h:78
void AlterVehicleListOrder(EngineID engine, uint target)
Record a vehicle ListOrderChange.
void UnloadWagonOverrides(Engine *e)
Unload all wagon override sprite groups.
Money GetDisplayProfitThisYear() const
Gets the profit vehicle had this year.
Definition: vehicle_base.h:567
DirectionByte direction
facing
Definition: vehicle_base.h:271
RailType
Enumeration for all possible railtypes.
Definition: rail_type.h:29
uint target
local ID
uint32 grfid
The GRF ID of the file the entity belongs to.
Definition: engine_base.h:149
ResolverObject & ro
Surrounding resolver object.
#define DAYS_TILL_ORIGINAL_BASE_YEAR
The offset in days from the &#39;_date == 0&#39; till &#39;ConvertYMDToDate(ORIGINAL_BASE_YEAR, 0, 1)&#39;.
Definition: date_type.h:82
VarSpriteGroupScope
static const GRFFile * GetEngineGrfFile(EngineID engine_type)
Get the grf file associated with an engine type.
static Titem * Get(size_t index)
Returns Titem with given index.
Definition: pool_type.hpp:246
bool CanCarryCargo() const
Determines whether an engine can carry something.
Definition: engine.cpp:173
Functions related to dates.
Conventional Take Off and Landing, i.e. planes.
Definition: engine_type.h:93
Heading for terminal 6.
Definition: airport.h:70
static const Year ORIGINAL_MAX_YEAR
The maximum year of the original TTD.
Definition: date_type.h:55
void Reset()
Remove all items from the list and free allocated memory.
const AirportFTAClass * GetFTA() const
Get the finite-state machine for this airport or the finite-state machine for the dummy airport in ca...
Definition: station_base.h:332
byte breakdown_delay
Counter for managing breakdown length.
Definition: vehicle_base.h:264
Helicopter landing.
Definition: airport.h:57
Base for the train class.
uint16 GetVehicleCallbackParent(CallbackID callback, uint32 param1, uint32 param2, EngineID engine, const Vehicle *v, const Vehicle *parent)
Evaluate a newgrf callback for vehicles with a different vehicle for parent scope.
Functions related to debugging.
static T SetBit(T &x, const uint8 y)
Set a bit in a variable.
Called to spawn visual effects for vehicles.
byte pos
Next desired position of the aircraft.
Definition: aircraft.h:76
uint16 cur_speed
current speed
Definition: vehicle_base.h:293
Taxiing at the airport.
Definition: airport.h:55
Interface for SpriteGroup-s to access the gamestate.
GRFFilePropsBase< NUM_CARGO+2 > grf_prop
Properties related the the grf file.
Definition: engine_base.h:60
Disaster vehicle type.
Definition: vehicle_type.h:32
static byte MapAircraftMovementState(const Aircraft *v)
Map OTTD aircraft movement states to TTDPatch style movement states (VarAction 2 Variable 0xE2) ...
byte spritenum
currently displayed sprite index 0xfd == custom sprite, 0xfe == custom second head sprite 0xff == res...
Definition: vehicle_base.h:279
Both directions faces to the same direction.
Specification of a cargo type.
Definition: cargotype.h:56
static const Livery * LiveryHelper(EngineID engine, const Vehicle *v)
Determines the livery of an engine.
uint16 wait_counter
Ticks waiting in front of a signal, ticks being stuck or a counter for forced proceeding through sign...
Definition: train.h:103
Functions related to vehicles.
Aircraft, helicopters, rotors and their shadows belong to this class.
Definition: aircraft.h:74
This bit will be set if the NewGRF var 43 currently stored is valid.
Definition: vehicle_base.h:61
Called when the company (or AI) tries to start or stop a vehicle.
const Livery * GetEngineLivery(EngineID engine_type, CompanyID company, EngineID parent_engine_type, const Vehicle *v, byte livery_setting)
Determines the livery for a vehicle.
Definition: vehicle.cpp:1876
Vehicle data structure.
Definition: vehicle_base.h:212
void Clear()
Clear all information.
Definition: vehicle_base.h:155
uint DaysInTransit() const
Returns average number of days in transit for a cargo entity.
Definition: cargopacket.h:270
const T * Begin() const
Get the pointer to the first item (const)
Set when using the callback resolve system, but not to resolve a callback.
TrackBitsByte state
The "track" the ship is following.
Definition: ship.h:25
Tindex index
Index of this pool item.
Definition: pool_type.hpp:147
Vehicle is flying in the air.
Definition: airport.h:77
EngineID GetID(VehicleType type, uint16 grf_local_id, uint32 grfid)
Looks up an EngineID in the EngineOverrideManager.
Definition: engine.cpp:511
void CommitVehicleListOrderChanges()
Deternine default engine sorting and execute recorded ListOrderChanges from AlterVehicleListOrder.
T * First() const
Get the first vehicle in the chain.
Vehicle is unloading cargo.
Definition: vehicle_base.h:45
Base for aircraft.
PropertyID
List of NewGRF properties used in Action 0 or Callback 0x36 (CBID_VEHICLE_MODIFY_PROPERTY).
virtual ScopeResolver * GetScope(VarSpriteGroupScope scope=VSG_SCOPE_SELF, byte relative=0)
Get a resolver for the scope.
StationID last_station_visited
The last station we stopped at.
Definition: vehicle_base.h:302
uint16 reliability_spd_dec
Reliability decrease speed.
Definition: vehicle_base.h:262
uint32 position_consist_length
Cache for NewGRF var 40.
Definition: vehicle_base.h:69
Simple vector template class.
byte user_def_data
Cached property 0x25. Can be set by Callback 0x36.
Definition: train.h:79
Determine whether a wagon can be attached to an already existing train.
Relative position (vehicles only)
byte num_loaded
Number of loaded groups.
uint32 cached_power
Total power of the consist (valid only for the first engine).
uint32 reseed[VSG_END]
Collects bits to rerandomise while triggering triggers.
static const VehicleID INVALID_VEHICLE
Constant representing a non-existing vehicle.
Definition: vehicle_type.h:57
static T max(const T a, const T b)
Returns the maximum of two values.
Definition: math_func.hpp:26
uint16 MapOldOrder() const
Pack this order into a 16 bits integer as close to the TTD representation as possible.
Definition: order_cmd.cpp:209
uint16 classes
Classes of this cargo type.
Definition: cargotype.h:79
byte vehstatus
Status.
Definition: vehicle_base.h:317
EngineImageType
Visualisation contexts of vehicles and engines.
Definition: vehicle_type.h:87
byte flags
Flags of the engine.
Definition: engine_base.h:35
Year _cur_year
Current year, starting at 0.
Definition: date.cpp:26
Helicopter wants to land.
Definition: airport.h:80
uint StoredCount() const
Returns sum of cargo on board the vehicle (ie not only reserved).
Definition: cargopacket.h:366
byte overtaking
Set to RVSB_DRIVE_SIDE when overtaking, otherwise 0.
Definition: roadveh.h:92
static Train * From(Vehicle *v)
Converts a Vehicle to SpecializedVehicle with type checking.
uint16 cached_max_speed
Maximum speed of the consist (minimum of the max speed of all vehicles in the consist).
Definition: vehicle_base.h:123
const T * End() const
Get the pointer behind the last valid item (const)
const Engine * GetEngine() const
Retrieves the engine of the vehicle.
Definition: vehicle.cpp:743
CargoID GetDefaultCargoType() const
Determines the default cargo type of an engine.
Definition: engine_base.h:81
bool IsNormalAircraft() const
Check if the aircraft type is a normal flying device; eg not a rotor or a shadow. ...
Definition: aircraft.h:121
Go exactly to the destination coordinates.
Definition: airport.h:54
Direction
Defines the 8 directions on the map.
static uint ClampU(const uint a, const uint min, const uint max)
Clamp an unsigned integer between an interval.
Definition: math_func.hpp:184
T * Append(uint to_add=1)
Append an item and return it.
EngineID first_engine
Cached EngineID of the front vehicle. INVALID_ENGINE for the front vehicle itself.
Holding pattern movement (above the airport).
Definition: airport.h:58
Pseudo random number generator.
const SpriteGroup * root_spritegroup
Root SpriteGroup to use for resolving.
byte breakdown_ctr
Counter for managing breakdown events.
Definition: vehicle_base.h:263
Vehicle * Move(int n)
Get the vehicle at offset n of this vehicle chain.
Definition: vehicle_base.h:624
byte subtype
subtype (Filled with values from #EffectVehicles/#TrainSubTypes/#AircraftSubTypes) ...
Definition: vehicle_base.h:327
Buses, trucks and trams belong to this class.
Definition: roadveh.h:88
uint16 cargo_cap
total capacity
Definition: vehicle_base.h:307
Aircraft vehicle type.
Definition: vehicle_type.h:27
Vehicle is a prototype (accepted as exclusive preview).
Definition: vehicle_base.h:46
Turn slowly (mostly used in the air).
Definition: airport.h:52
byte acceleration
used by train & aircraft
Definition: vehicle_base.h:295
static uint32 GetRegister(uint i)
Gets the value of a so-called newgrf "register".
Resolve no wagon overrides.
Definition: newgrf_engine.h:52
virtual const SpriteGroup * Resolve(ResolverObject &object) const
Base sprite group resolver.
Action 2 handling.
uint16 internal_id
The internal ID within the GRF file.
Definition: engine_base.h:150
virtual bool IsPrimaryVehicle() const
Whether this is the primary vehicle in the chain.
Definition: vehicle_base.h:434
UnitID unitnumber
unit number, for display purposes only
Definition: vehicle_base.h:291
const SpriteGroup ** loaded
List of loaded groups (can be SpriteIDs or Callback results)
byte cargo_subtype
Used for livery refits (NewGRF variations)
Definition: vehicle_base.h:306
uint Length() const
Get the number of items in the list.
byte subtype
Type of aircraft.
Definition: engine_type.h:102
West.
static byte MapAircraftMovementAction(const Aircraft *v)
Map OTTD aircraft movement states to TTDPatch style movement actions (VarAction 2 Variable 0xE6) This...
Resolve wagon overrides.
Definition: newgrf_engine.h:53
Heading for terminal 7.
Definition: airport.h:82
GroundVehicleCache * GetGroundVehicleCache()
Access the ground vehicle cache of the vehicle.
Definition: vehicle.cpp:2797
bool IsType(OrderType type) const
Check whether this order is of the given type.
Definition: order_base.h:63
Called to modify various vehicle properties.
Resolver for a vehicle (chain)
Definition: newgrf_engine.h:49
T * Next() const
Get next vehicle in the chain.
Heading for terminal 2.
Definition: airport.h:66
Draw vehicle by stacking multiple sprites.
Definition: engine_type.h:161
Definition of base types and functions in a cross-platform compatible way.
static const uint VEHICLE_LENGTH
The length of a vehicle in tile units.
Definition: vehicle_type.h:78
bool IsArticulatedPart() const
Check if the vehicle is an articulated part of an engine.
Definition: vehicle_base.h:891
A number of safeguards to prevent using unsafe methods.
void InvalidateNewGRFCacheOfChain()
Invalidates cached NewGRF variables of all vehicles in the chain (after the current vehicle) ...
Definition: vehicle_base.h:461
void VehicleEnteredDepotThisTick(Vehicle *v)
Adds a vehicle to the list of vehicles that visited a depot this tick.
Definition: vehicle.cpp:894
byte waiting_triggers
Triggers to be yet matched before rerandomizing the random bits.
Definition: vehicle_base.h:300
DirDiff
Enumeration for the difference between two directions.
Station * GetTargetAirportIfValid(const Aircraft *v)
Returns aircraft&#39;s target station if v->target_airport is a valid station with airport.
uint32 position_same_id_length
Cache for NewGRF var 41.
Definition: vehicle_base.h:70
void FillNewGRFVehicleCache(const Vehicle *v)
Fill the grf_cache of the given vehicle.
VehicleType type
Vehicle type, ie VEH_ROAD, VEH_TRAIN, etc.
Definition: engine_base.h:42
virtual int GetCurrentMaxSpeed() const
Calculates the maximum speed of the vehicle under its current conditions.
Definition: vehicle_base.h:493
CargoID cargo_type
type of cargo this vehicle is carrying
Definition: vehicle_base.h:305
Information about a particular livery.
Definition: livery.h:76
Effect vehicle type (smoke, explosions, sparks, bubbles)
Definition: vehicle_type.h:31
static T * ReallocT(T *t_ptr, size_t num_elements)
Simplified reallocation function that allocates the specified number of elements of the given type...
Definition: alloc_func.hpp:113
uint16 load_unload_ticks
Ticks to wait before starting next cycle.
Definition: vehicle_base.h:325
static const byte LIT_ALL
Show the liveries of all companies.
Definition: livery.h:19
byte misc_flags
Miscellaneous flags.
Definition: engine_type.h:142
TileIndex tile
Current tile index.
Definition: vehicle_base.h:230
VehicleResolverObject(EngineID engine_type, const Vehicle *v, WagonOverride wagon_override, bool info_view=false, CallbackID callback=CBID_NO_CALLBACK, uint32 callback_param1=0, uint32 callback_param2=0)
Resolver of a vehicle (chain).
This bit will be set if the NewGRF var 42 currently stored is valid.
Definition: vehicle_base.h:60
bool HasArticulatedPart() const
Check if an engine has an articulated part.
Definition: vehicle_base.h:900
const SpriteGroup ** loading
List of loading groups (can be SpriteIDs or Callback results)
static DirDiff DirDifference(Direction d0, Direction d1)
Calculate the difference between two directions.
Heading for helipad 3.
Definition: airport.h:84
Sprite sequence for a vehicle part.
Definition: vehicle_base.h:130
Heading for terminal 3.
Definition: airport.h:67
uint8 cargo_map[NUM_CARGO]
Inverse cargo translation table (CargoID -> local ID)
Definition: newgrf.h:126
Called to determine if a specific colour map should be used for a vehicle instead of the default live...
Airplane has arrived at a runway for take-off.
Definition: airport.h:74
#define lengthof(x)
Return the length of an fixed size array.
Definition: depend.cpp:42
Road vehicle type.
Definition: vehicle_type.h:25
Invalid cargo type.
Definition: cargo_type.h:70
const AirportMovingData * MovingData(byte position) const
Get movement data at a position.
Definition: airport.h:171
static T min(const T a, const T b)
Returns the minimum of two values.
Definition: math_func.hpp:42
Resolved object itself.
byte random_bits
Bits used for determining which randomized variational spritegroups to use when drawing.
Definition: vehicle_base.h:299
byte breakdowns_since_last_service
Counter for the amount of breakdowns.
Definition: vehicle_base.h:265
uint16 reliability
Reliability.
Definition: vehicle_base.h:261
static const Year ORIGINAL_BASE_YEAR
The minimum starting year/base year of the original TTD.
Definition: date_type.h:51
Vehicle * First() const
Get the first vehicle of this vehicle chain.
Definition: vehicle_base.h:595
byte tick_counter
Increased by one for each tick.
Definition: vehicle_base.h:314
uint16 crashed_ctr
Animation counter when the vehicle has crashed.
Definition: roadveh.h:94
const struct SpriteGroup * spritegroup[Tcnt]
pointer to the different sprites of the entity
All ships have this type.
Definition: ship.h:24
Year build_year
Year the vehicle has been built.
Definition: vehicle_base.h:257
byte state
State of the airport.
Definition: aircraft.h:79
virtual uint32 GetVariable(byte variable, uint32 parameter, bool *available) const
Get a variable value.
byte turn_counter
Ticks between each turn to prevent > 45 degree turns.
Definition: aircraft.h:82
Ship vehicle type.
Definition: vehicle_type.h:26
static T Clamp(const T a, const T min, const T max)
Clamp a value between an interval.
Definition: math_func.hpp:139
uint32 GetVariable(byte variable, uint32 parameter, bool *available) const
Get a variable value.
#define DEBUG(name, level,...)
Output a line of debugging information.
Definition: debug.h:39
&#39;Train&#39; is either a loco or a wagon.
Definition: train.h:88
Maximal number of cargo types in a game.
Definition: cargo_type.h:66
TileIndex tile
The base tile of the area.
Definition: tilearea_type.h:19
byte breakdown_chance
Current chance of breakdowns.
Definition: vehicle_base.h:266
This bit will be set if the NewGRF var 4D currently stored is valid.
Definition: vehicle_base.h:62
byte num_loading
Number of loading groups.
Wagon is powered.
Definition: train.h:29
static const EngineID INVALID_ENGINE
Constant denoting an invalid engine.
Definition: engine_type.h:174
const GRFFile * grffile
GRFFile the resolved SpriteGroup belongs to.
static int32 ClampToI32(const int64 a)
Reduce a signed 64-bit int to a signed 32-bit one.
Definition: math_func.hpp:203
Functions related to companies.
uint32 company_information
Cache for NewGRF var 43.
Definition: vehicle_base.h:72
Called for every vehicle every 32 days (not all on same date though).
RailType GetTileRailType(TileIndex tile)
Return the rail type of tile, or INVALID_RAILTYPE if this is no rail tile.
Definition: rail.cpp:157
int FindIndex(const T &item) const
Search for the first occurrence of an item.
bool IsGroundVehicle() const
Check if the vehicle is a ground vehicle.
Definition: vehicle_base.h:472
const GRFFile * GetGRF() const
Retrieve the NewGRF the engine is tied to.
Definition: engine_base.h:140
DestinationID GetDestination() const
Gets the destination of this order.
Definition: order_base.h:96
byte subspeed
fractional speed
Definition: vehicle_base.h:294
Used for vehicle var 0xFE bit 8 (toggled each time the train is reversed, accurate for first vehicle ...
Definition: train.h:33
uint16 EngineID
Unique identification number of an engine.
Definition: engine_type.h:22
static CargoSpec * Get(size_t index)
Retrieve cargo details for the given cargo ID.
Definition: cargotype.h:118
CompanyByte _current_company
Company currently doing an action.
Definition: company_cmd.cpp:47
Cargo support for NewGRFs.
Vehicle * Next() const
Get the next vehicle of this vehicle.
Definition: vehicle_base.h:582
Date date_of_last_service
Last date the vehicle had a service at a depot.
Definition: vehicle_base.h:260
Airplane wants to land.
Definition: airport.h:78
uint32 consist_cargo_information
Cache for NewGRF var 42. (Note: The cargotype is untranslated in the cache because the accessing GRF ...
Definition: vehicle_base.h:71
Related object of the resolved one.
Resolve self-override (helicopter rotors and such).
Definition: newgrf_engine.h:55
VehicleTypeByte type
The engine type.
Definition: engine_base.h:151
ScopeResolver * GetScope(VarSpriteGroupScope scope=VSG_SCOPE_SELF, byte relative=0)
Get a resolver for the scope.
OwnerByte owner
Which company owns the vehicle?
Definition: vehicle_base.h:273
uint32 position_in_vehicle
Cache for NewGRF var 4D.
Definition: vehicle_base.h:73
void CDECL grfmsg(int severity, const char *str,...)
DEBUG() function dedicated to newGRF debugging messages Function is essentially the same as DEBUG(grf...
Definition: newgrf.cpp:375
CallbackID callback
Callback being resolved.
static uint GB(const T x, const uint8 s, const uint8 n)
Fetch n bits from x, started at bit s.
Heading for terminal 8.
Definition: airport.h:83
uint32 GetCompanyInfo(CompanyID owner, const Livery *l)
Returns company information like in vehicle var 43 or station var 43.
Reverse the visible direction of the vehicle.
Definition: train.h:30
End of the bits.
Definition: vehicle_base.h:63
uint8 GetReverseRailTypeTranslation(RailType railtype, const GRFFile *grffile)
Perform a reverse railtype lookup to get the GRF internal ID.
int32 z_pos
z coordinate.
Definition: vehicle_base.h:270
Vehicle is not visible.
Definition: vehicle_base.h:32
Same as AT_LARGE.
static bool IsValidID(size_t index)
Tests whether given index can be used to get valid (non-NULL) Titem.
Definition: pool_type.hpp:235
uint16 local_id
id defined by the grf file for this entity
Heading for terminal 5.
Definition: airport.h:69
uint32 GetGRFID() const
Retrieve the GRF ID of the NewGRF the vehicle is tied to.
Definition: vehicle.cpp:763
Base for ships.
Heading for terminal 4.
Definition: airport.h:68
static int CDECL EnginePreSort(const EngineID *a, const EngineID *b)
Comparator function to sort engines via scope-GRFID and local ID.
VehicleOrderID GetNumOrders() const
Get the number of orders this vehicle has.
Definition: vehicle_base.h:688
uint16 GetVehicleCallback(CallbackID callback, uint32 param1, uint32 param2, EngineID engine, const Vehicle *v)
Evaluate a newgrf callback for vehicles.
static void free(const void *ptr)
Version of the standard free that accepts const pointers.
Definition: depend.cpp:114
uint8 cached_veh_length
Length of this vehicle in units of 1/VEHICLE_LENGTH of normal length. It is cached because this can b...
Airport airport
Tile area the airport covers.
Definition: station_base.h:460
static DirDiff ChangeDirDiff(DirDiff d, DirDiff delta)
Applies two differences together.
EngineID engine_type
The type of engine used for this vehicle.
Definition: vehicle_base.h:288
const struct GRFFile * grffile
grf file that introduced this entity
uint8 bitnum
Cargo bit number, is INVALID_CARGO for a non-used spec.
Definition: cargotype.h:57
const SpriteGroup * ResolveReal(const RealSpriteGroup *group) const
Get the real sprites of the grf.
CallbackID
List of implemented NewGRF callbacks.
Heading for helipad 1.
Definition: airport.h:71
int32 x_pos
x coordinate.
Definition: vehicle_base.h:268
Helicopter wants to finish landing.
Definition: airport.h:81
uint16 vehicle_flags
Used for gradual loading and other miscellaneous things (.
Definition: base_consist.h:32
static bool HasBit(const T x, const uint8 y)
Checks if a bit in a value is set.
Helicopter take-off.
Definition: airport.h:56
Set when calling a randomizing trigger (almost undocumented).
uint8 cache_valid
Bitset that indicates which cache values are valid.
Definition: vehicle_base.h:74
static const TileIndex INVALID_TILE
The very nice invalid tile marker.
Definition: tile_type.h:85
const T * Get(uint index) const
Get the pointer to item "number" (const)
uint16 flag
special flags when moving towards the destination.
Definition: airport.h:135
byte CargoID
Cargo slots to indicate a cargo type within a game.
Definition: cargo_type.h:22
int32 y_pos
y coordinate.
Definition: vehicle_base.h:269
One direction is the opposite of the other one.
static uint32 PositionHelper(const Vehicle *v, bool consecutive)
Helper to get the position of a vehicle within a chain of vehicles.
SpriteID sprite
The &#39;real&#39; sprite.
Definition: gfx_type.h:25
Base classes/functions for stations.
VehicleCache vcache
Cache of often used vehicle values.
Definition: vehicle_base.h:330
Date _date
Current date in days (day counter)
Definition: date.cpp:28
static void QSortT(T *base, uint num, int(CDECL *comparator)(const T *, const T *), bool desc=false)
Type safe qsort()
Definition: sort_func.hpp:28
uint32 GetTriggers() const
Get the triggers.
Date age
Age in days.
Definition: vehicle_base.h:258
VehicleOrderID cur_real_order_index
The index to the current real (non-implicit) order.
Definition: base_consist.h:29
VehicleTypeByte type
Type of vehicle.
Definition: vehicle_type.h:54
Airplane wants to finish landing.
Definition: airport.h:79
static uint16 ClampToU16(const uint64 a)
Reduce an unsigned 64-bit int to an unsigned 16-bit one.
Definition: math_func.hpp:215
Station data structure.
Definition: station_base.h:446
NewGRFCache grf_cache
Cache of often used calculated NewGRF values.
Definition: vehicle_base.h:329
Money GetDisplayProfitLastYear() const
Gets the profit vehicle had last year.
Definition: vehicle_base.h:573
byte day_counter
Increased by one for each day.
Definition: vehicle_base.h:313
static RailType GetRailType(TileIndex t)
Gets the rail type of the given tile.
Definition: rail_map.h:116
byte delta_z
Z adjustment for helicopter pads.
Definition: airport.h:184
Order current_order
The current order (+ status, like: loading)
Definition: vehicle_base.h:318
uint32 GetRandomBits() const
Get a few random bits.
bool IsEngine() const
Check if a vehicle is an engine (can be first in a consist).
GroundVehicleCache gcache
Cache of often calculated values.
byte overtaking_ctr
The length of the current overtake attempt.
Definition: roadveh.h:93
Dynamic data of a loaded NewGRF.
Definition: newgrf.h:104
Train vehicle type.
Definition: vehicle_type.h:24
Helicopter wants to leave the airport.
Definition: airport.h:76
PaletteID pal
The palette (use PAL_NONE) if not needed)
Definition: gfx_type.h:26
void SetEngineGRF(EngineID engine, const GRFFile *file)
Tie a GRFFile entry to an engine, to allow us to retrieve GRF parameters etc during a game...
Resolve wagon overrides using TrainCache::cached_override.
Definition: newgrf_engine.h:54